MULTIPLE ORDER DUAL WAVELENGTH WAVEPLATES

Features

- Operate at both first and second Nd:YAG laser harmonics
- Retardation tolerance $<\lambda / 300$

Retardation and Wavelength	Catalogue number	Price, EUR
$\lambda @ 1064 \mathrm{~nm}+\lambda / 2 @ 532 \mathrm{~nm}$	$463-4120$	215
$\lambda @ 1064 \mathrm{~nm}+\lambda / 4 @ 532 \mathrm{~nm}$	$463-4140$	215
$\lambda / 2 @ 1064 \mathrm{~nm}+\lambda @ 532 \mathrm{~nm}$	$463-4210$	215
$\lambda / 2 @ 1064 \mathrm{~nm}+\lambda / 2 @ 532 \mathrm{~nm}$	$463-4220$	215
$\lambda / 2 @ 1064 \mathrm{~nm}+\lambda / 4 @ 532 \mathrm{~nm}$	$463-4240$	215
$\lambda / 4 @ 1064 \mathrm{~nm}+\lambda @ 532 \mathrm{~nm}$	$463-4410$	215
$\lambda / 4 @ 1064 \mathrm{~nm}+\lambda / 2 @ 532 \mathrm{~nm}$	$463-4420$	215
$\lambda / 4 @ 1064 \mathrm{~nm}+\lambda / 4 @ 532 \mathrm{~nm}$	$463-4440$	215

Specifications

Material	Single crystal quartz
Optical axis	normal to facet on circumference of retarder
Clear aperture	$\varnothing 17 \mathrm{~mm}$
Ring mount outer diameter	$25.4+0.0 /-0.2 \mathrm{~mm}$
Nominal thickness of waveplate	$0.2-1.2 \mathrm{~mm}$
Surface quality	$20-10$ scratch \& dig (MIL-PRF-13830B)
Wavefront distortion	$\lambda / 10 @ 633 \mathrm{~nm}$
Parallelism	<10 arcsec
AR coating	R <0.5\%
Damage threshold	$5 \mathrm{~J} / \mathrm{cm}^{2}, 10$ nsec pulse, 1064 nm typical

POLARIZATION PLANE ROTATORS

Features

- Made of crystalline quartz
- Intended to rotate a beam polarization plane strictly to an appropriate angle using the circular birefringent effect

Polarization plane rotators for any wavelength from 200 to 2300 nm are available.

Related Products

Polarization plane rotators of other wavelengths
See page 1.71
Kinematic Mirror and Beamsplitter Mount 840-0020
Find more at EksmaOptics.com

Kinematic Positioning Mount 840-0193
Find more at EksmaOptics.com

Compared to a waveplate, a rotator has an intrinsic advantage, being independent of rotation around its own optical axis. It needs no adjustment, only to be installed normal to incident radiation. A polarization plane rotator is normally used for the specific wavelength. It is only slightly dependent on ambient temperature.

Specifications

Material	Single crystal quartz
Optical axis	Normal to faces S1, S2 of rotator
Clear aperture	17 mm for 20 mm diameter
Ring mount outer diameter	$\mathrm{D}=25.4+0.0 /-0.2 \mathrm{~mm}$
Mount Thickness	$\mathrm{T}=6-20 \mathrm{~mm}$ (depending on wavelength and rotation angle)
Surface quality	$20-10$ scratch \& dig (MIL-PRF-13830B)
Wavefront distortion	$\lambda / 10$
Parallelism	<10 arcsec
AR coating	$\mathrm{R}<0.2 \%$ both sides
Damage threshold	$5 \mathrm{~J} / \mathrm{cm}^{2}, 10$ nsec pulse, 1064 nm typical

Wavelength, nm	Rotation angle of polarization plane, deg	Catalogue number	Price, EUR
266	45	$470-4264$	282
266	90	$470-4269$	282
355	45	$470-4354$	224
355	90	$470-4359$	224
532	45	$470-4534$	224
532	90	$470-4539$	224
1064	45	$470-4644$	247
1064	90	$470-4649$	247

