Table of Contents

F－THETA LENS

F－Theta lenses are designed to provide a flat field on the image plane for scanning and engraving applications where a high power laser and a set of rotating mirrors are used to scan across a given field．

BEST MIRROR PLACES m1／m2－16／16 mm，screw size－M85×1

Wavelength－ 1064 nm，Lens Diameter－ 90 mm

Focus length， $\mathbf{m m}$	Working distance $\mathbf{S}, \mathbf{m m}$	Max．scan area， $\mathbf{m m}^{2}$	Max．scan angle， $\boldsymbol{\theta} \mathbf{m a x}$	Input beam diameter， $\mathbf{m m}$	Spot size， $\boldsymbol{\mu m}$	Drawing	Catalogue number	Price， EUR
100	115	70×70	$\pm 28^{\circ}$	12	16	A	$150-1001$	420
160	176	110×110	$\pm 28^{\circ}$	12	26	A	$150-1601$	420
210	230	145×145	$\pm 28^{\circ}$	12	34	A	$150-2101$	420
254	284	175×175	$\pm 28^{\circ}$	16	31	A	$150-2541$	420
290	324	200×200	$\pm 28^{\circ}$	16	31	A	$150-2901$	420
330	346	220×220	$\pm 28^{\circ}$	16	40	A	$150-3301$	420
420	467	300×300	$\pm 28^{\circ}$	16	50	A	$150-4201$	420

Wavelength－ 532 nm，Lens Diameter－ 90 mm

Focus length， $\mathbf{m m}$	Working distance $\mathbf{S}, \mathbf{m m}$	Max．scan area， $\mathbf{m m}^{2}$	Max．scan angle， $\boldsymbol{\theta} \mathbf{m a x}$	Input beam diameter， $\mathbf{m m}$	Spot size， $\boldsymbol{\mu m}$	Drawing	Catalogue number	Price， EUR
100	115	70×70	$\pm 28^{\circ}$	12	16	A	$150-1002$	460
160	186	110×110	$\pm 28^{\circ}$	12	16	A	$150-1602$	460

Wavelength－ 355 nm

Focus length， $\mathbf{m m}$	Working distance $\boldsymbol{S}, \mathbf{m m}$	Max．scan area， $\mathbf{m m}^{2}$	Max．scan angle， $\boldsymbol{\theta} \mathbf{m a x}$	Input beam diameter， $\mathbf{m m}$	Spot size， $\boldsymbol{\mu} \mathbf{m}$	Drawing	Catalogue number	Price， EUR
100	126	70×70	$\pm 28^{\circ}$	7	10	A	$\mathbf{1 5 0 - 1 0 0 3}$	930
160	199	110×110	$\pm 28^{\circ}$	7	15	B	$150-1603$	930

BEST MIRROR PLACES m1／m2－24／24 mm，screw size－M85×1
Wavelength－ 1064 nm，Lens Diameter－ 104 mm

Focus length， $\mathbf{m m}$	Working distance $\mathbf{S}, \mathbf{m m}$	Max．scan area， $\mathbf{m m}^{\mathbf{2}}$	Max．scan angle， $\boldsymbol{\theta} \mathbf{m a x}$	Input beam diameter， $\mathbf{m m}$	Spot size， $\boldsymbol{\mu m}$	Drawing	Catalogue number	Price， EUR
163	185	110×110	$\pm 28^{\circ}$	20	17	C	$151-1631$	520
210	255	150×150	$\pm 28^{\circ}$	20	24	C	$151-2101$	520
254	285	175×175	$\pm 28^{\circ}$	20	31	C	$151-2541$	520
420	467	300×300	$\pm 28^{\circ}$	20	55	C	$151-4201$	520
650	697	400×400	$\pm 25^{\circ}$	20	85	C	$151-6501$	520

COMPACT BEAM EXPANDER

A laser beam expander is designed to increase the diameter of a collimated input beam to a larger collimated output beam. EKSMA OPTICS offers compact Galilean type beam expanders for $1064 \mathrm{~nm}, 532 \mathrm{~nm}$ and 355 nm wavelengths. Compact beam expander has the possibility to be adjusted for the input beam divergence angle to obtain collimated, divergent or focused beam at the output.

SPECIFICATIONS

Lens material	AR coated Fused Silica Lenses
Screw Size	M 22×0.75

Wavelength, nm	Expansion ratio	Beam expander size L, mm	Transmission, \%	Catalogue number	Price, EUR
1064	2X	51	>96	160-0021	235
1064	2.5X	51	>96	160-0251	235
1064	3X	68	>96	160-0031	235
1064	4X	75	>96	160-0041	235
1064	5X	73	>96	160-0051	235
1064	6X	75	>96	160-0061	235
1064	8X	77	>96	160-0081	235
1064	10X	70	>96	160-0101	235
532	2X	51	>96	160-0022	235
532	2.5X	51	>96	160-0252	235
532	3X	68	>96	160-0032	235
532	4X	75	>96	160-0042	235
532	5X	73	>96	160-0052	235
532	6X	75	>96	160-0062	235
532	8X	77	>96	160-0082	235
532	10X	70	>96	160-0102	235
355	4X	75	>96	160-0043	250
355	6X	75	>96	160-0063	250
355	8X	68	>96	160-0083	250
355	10X	71	>96	160-0103	250

Compact beam expanders of other expansion ratio are available upon request.

ZOOM BEAM EXPANDER

FEATURES

> Adjustable $1 \mathrm{X}-8 \mathrm{X}$ or $2 \mathrm{X}-8 \mathrm{X}$ expansion ratio
> Adjustable divergence
> Galilean design

Compact Galilean type zoom beam expanders are designed for Nd:YAG fundamental and harmonic wavelengths: $1064 \mathrm{~nm}, 532 \mathrm{~nm}$ and 355 nm . Zoom beam expanders provide

Wavelength, $\mathbf{n m}$	Expantion ratio	Input Clear Aperture, $\mathbf{m m}$	Output Clear Aperture, $\mathbf{m m}$	Length, $\mathbf{m m}$	Catalogue number	Price, EUR
1064	$1 \mathrm{x}-8 \mathrm{x}$	12	33	162	$\mathbf{1 6 5 - 1 1 8 1}$	860
1064	$2 \mathrm{x}-8 \mathrm{x}$	12	33	143.3	$165-1281$	860
532	$1 \mathrm{x}-8 \mathrm{x}$	12	33	162	$165-1185$	860
532	$2 \mathrm{x}-8 \mathrm{x}$	12	33	139.9	$165-1285$	860
355	$1 \mathrm{x}-8 \mathrm{x}$	12	33	162	$165-1183$	1120
355	$2 \mathrm{x}-8 \mathrm{x}$	12	33	158.5	$165-1283$	860

Visit our e-shop www.eksmaoptics.com and find the drawings of all zoom beam expanders.
$1 \mathrm{X}-8 \mathrm{X}$ or $2 \mathrm{X}-8 \mathrm{X}$ continuous magnification with adjustable focus to correct for laser beam divergence.

RELATED PRODUCT

Large Rod Small Mounting Clamp (aluminium) 810-0062A
Find more at EksmaOptics.com

SIMPLE TELESCOPE KIT

Simple lenses are subject to optical aberrations．In many cases these aberrations can be compensated for to a great extent by using a combination of simple lenses with complementary aberrations．A compound lens is a collection of simple lenses of different shapes and made of materials of different refractive indices，arranged one after the other with a common axis．
If two thin lenses are separated in air by some distance d（where d is smaller than the focal length of the first lens），the focal length for the combined system is given by

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} \cdot f_{2}}
$$

The distance from the second lens to the focal point of the combined lenses is called the back focal length（BFL）．

$$
B F L=\frac{f_{2} \cdot\left(d-f_{1}\right)}{d-\left(f_{1}+f_{2}\right)}
$$

If the separation distance is equal to the sum of the focal lengths（ $d=f_{1}+f_{2}$ ），the combined focal length and BFL are infinite．This corresponds to a pair of lenses that transform a parallel（collimated）beam into another collimated beam．This type of system is called
an afocal system，since it produces no net convergence or divergence of the beam．Two lenses at this separation form the simplest type of optical telescope．Although the system does not alter the divergence of a collimated beam，it does alter the width of the beam．The magnification of such a telescope is given by

$$
M=-\frac{f_{2}}{f_{1}}=\frac{D_{\text {out }}}{D_{\text {in }}} \frac{(\text { exit diameter })}{\text { (input diameter) }}
$$

which is the ratio of the input beam width to the output beam width．Note the sign convention：a telescope with two convex lenses（ $f_{1}>0, f_{2}>0$ ）produces a negative magnification，indicating an inverted image． A concave plus a convex lens（ $f_{1}<0<f_{2}$ ） produces a positive magnification and the image is upright．

Coating	Material	Catalogue number	Price，EUR
Uncoated	BK7	$140-0008$	771
$1064 \mathrm{~nm}, \mathrm{R}<0.2 \%$	BK7	$141-0008$	1075
$532 \mathrm{~nm}+1064 \mathrm{~nm}, \mathrm{R}<0.5 \%$	BK7	$142-0008$	1110
$400-700 \mathrm{~nm}, \mathrm{R}<0.9 \%$	BK7	$147-0008$	1260
Uncoated	UV FS	$140-1008$	1170
$266 \mathrm{~nm}, \mathrm{R}<0.4 \%$	UV FS	$144-1008$	1470
$266 \mathrm{~nm}+355 \mathrm{~nm}, \mathrm{R}<0.6 \%$	UV FS	$149-1008$	1480
$210-400 \mathrm{~nm}, \mathrm{R}<1.5 \%$	UV FS	$146-1008$	1680
$355 \mathrm{~nm}, \mathrm{R}<0.25 \%$	UV FS	$143-1008$	1465
$532 \mathrm{~nm}+1064 \mathrm{~nm}, \mathrm{R}<0.5 \%$	UV FS	$141-1008$	1485
$350-900 \mathrm{~nm}, \mathrm{R}<1.5 \%$	UV FS	$145-1008$	1685
$650-950 \mathrm{~nm}, \mathrm{R}<1 \%$	UV FS	$148-1008$	1645

Any other antireflection coating wavelength region is available on request．
Each kit includes 8 lenses，Aluminium Optical Rail 810－0005－02，two Aluminium Rail Carriers 810－0007－06，Self Centering Lens Mounts 830－0010 and 830－0020，two Rod Holders 820－0050－02 and two Rods 820－0010－02．Net weight： 1.4 kg

SIMPLE TELESCOPE KIT

＊Note that distance between lenses d is the distance between focal planes of the lenses and is given theoretically （the thickness of lenses is not included into calculation）．It，also， depends on wavelength． The distance should be adjusted $\pm 10 \mathrm{~mm}$ in each particular case．

Material：BK7		Material：UV FS		Focal length f1，mm	Focal length $f 2, \mathrm{~mm}$	Distance between lenses $d=f 1+f 2, \mathrm{~mm}$＊	Magnification， M
Lens 1	Lens 2	Lens 1	Lens 2				
$\begin{aligned} & \hline \text { BK7 bi/cv } \\ & \varnothing 12.7 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { BK7 pl/cx } \\ & \emptyset 50.8 \mathrm{~mm} \end{aligned}$	UV FS bi／cv $\varnothing 12.7 \mathrm{~mm}$	UV FS pl／cx $\emptyset 50.8 \mathrm{~mm}$				
114－0104	110－0502	114－1104	110－1505	－12．7	＋75	62	5.9
	110－0505		110－1509		＋100	87	7.7
	110－0507		110－1511		＋150	137	11.8
	110－0509		110－1515		＋200	187	15.7
	110－0511		110－1517		＋250	237	19.7
$\begin{aligned} & \hline \text { BK7 bi/cv } \\ & \emptyset 25.4 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { BK7 pl/cx } \\ & \emptyset 50.8 \mathrm{~mm} \end{aligned}$	UV FS bi／cv $\emptyset 25.4 \mathrm{~mm}$	UV FS pl／cx $\varnothing 50.8 \mathrm{~mm}$				
114－0204	110－0502	114－1204	110－1505	－25	＋75	50	3
	110－0505		110－1509		＋100	75	4
	110－0507		110－1511		＋150	125	6
	110－0509		110－1515		＋200	175	8
	110－0511		110－1517		＋250	225	10
$\begin{aligned} & \mathrm{BK7} \mathrm{pl} / \mathrm{cv} \\ & \emptyset 25.4 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \mathrm{BK7} \mathrm{pl} / \mathrm{cx} \\ & \varnothing 50.8 \mathrm{~mm} \end{aligned}$	UV FS pl／cv $\emptyset 25.4 \mathrm{~mm}$	UV FS pl／cx $\varnothing 50.8 \mathrm{~mm}$				
112－0209	110－0502	112－1205	110－1505	－50	＋75	25	1.5
	110－0505		110－1509		＋100	50	2
	110－0507		110－1511		＋150	100	3
	110－0509		110－1515		＋200	150	4
	110－0511		110－1517		＋250	200	5

GAUSS-TO-TOP HAT BEAM SHAPING LENS

FEATURES

> Square Top Hat beam profile
> Efficiency >95 \%
> Top Hat width from $50 \mu \mathrm{~m}$ to several cm

Gauss-to-Top Hat Beam Shaping Lens is a lens of a special form, used to distribute energy of Gaussian beam to Top Hat profile. GTH beam shapers operate within a large wavelength range from VIS to NIR.
Top Hat beam shapers GTH-4-2.2 and GTH-3.6-1.75 work together with nearly any focusing optic. Top Hat profile is generated in the focal plane of this focusing optic. By varying the focal length it is possible to scale Top Hat size and working distance.
GTH-5-250-4 is an exception to the other beam shapers because a focal length of 250 mm is integrated. However, Top Hat size can also be scaled by using additional lenses.

LENS SPECIFICATIONS

	LF5 Schott glass
Material	$\mathrm{n}=1.5659$ @ 1060 nm,
	$\mathrm{n}=1.5848$ @ 546 nm,
$\mathrm{n}=1.6192$ @ 365 nm	
Clear aperture	$\varnothing 11.0 \mathrm{~mm}$
Damage threshold (uncoated)	$>3 \mathrm{~J} / \mathrm{cm}^{2} @ 532 \mathrm{~nm}, 10 \mathrm{~ns}$
Mounting	Mounted into $1 "$ ring holder

Top Hat width in relation to the working distance

GAUSS-TO-TOP-HAT BEAM SHAPING LENS - GTH-5-250-4

Square top hat size and corresponding working distance can be changed by placing an extra lens or objective behind beam shaping lens GTH-5-250-4. Dependence of square size and working distance vs focal length of additional lens or objective:

Focal length, $\mathbf{m m}$	Top hat square size, $\mathbf{m m}$	Working distance, $\mathbf{m m}$
+50	0.67×0.67	42
+100	1.1×1.1	71
+200	1.8×1.8	111
+300	2.2×2.2	136
-1000	5.3×5.3	333
-500	8.0×8.0	500

GTH-5-250-4 OPERATION SPECIFICATIONS

Recommended operation wavelength range	$400-1500 \mathrm{~nm}$
Input beam	TEM 00 , diameter $\left(1 / \mathrm{e}^{2}\right): 5.0 \pm 0.15 \mathrm{~mm}$
Output beam	Top hat size at 250 mm working distance: $4 \times 4 \mathrm{~mm}^{2}$ (adjustable with additional lens)
Working distance	250 mm (adjustable with additional lens)
Beam energy distribution efficiency	$>95 \%$ of input energy within Top Hat profile
Beam homogenity	$\pm 5 \%$ (rel. to average intensity within top hat)
Lens diameter	$12.0+0.0 /-0.1 \mathrm{~mm}$
Thickness	$4.0 \pm 0.1 \mathrm{~mm}$

Description	Catalogue number	Price, EUR
Uncoated lens	GTH-5-250-4	565
VIS coated lens (400-700 nm (R<1\% per face))	GTH-5-250-4-VIS	620
IR coated lens (700-1300 $\mathrm{nm}(\mathrm{R}<1 \%$ per face))	GTH-5-250-4-IR	620

[^0]PRINCIPLES OF BEAM SHAPER OPERATION AND LENS SHAPE

Energy of Gaussian input beam is redistributed to a Top Hat beam profile by beam shaper lens (mapping).

Surface contour plot of beam shaper lens (free form optic).

OPTICAL SETUP FOR GAUSS-TO-TOP HAT BEAM SHAPER LENS

If a collimated Gaussian beam is used the Top Hat beam shaper lens delivers at the working distance $d=250 \mathrm{~mm}$ a square Top Hat beam profile with the size of $(4 \times 4) \mathrm{mm}^{2}$.
The Top Hat beam shaper lens works also for divergent and convergent Gaussian beams. Important: One has to consider that input beam diameter at beam shaper lens plane must be 5 mm @ $1 / \mathrm{e}^{2}$. For divergent (or convergent) beams the size of Top Hat and working distance increase (or decrease).

HOMOGENEOUS LINE GENERATION WITH TOP HAT BEAM SHAPPER LENS AND ADDITIONAL CYLINDRICAL LENS

plane must be bigger or same as focal length of cyindrica possible to generate a line profile at working plane. Along the long axis the intensity profile is homogeneous. Along short axis, which is focused by cylindrical lens, the profile is near Gaussian.

By varying the distance I the width of line profile (short axis) can be changed from near diffraction limited size to several millimiters.

ADJUSTMENT OF SQUARE TOP HAT SIZE BY ADDITIONAL

 SPHERICAL LENS

The working distance and the size of the Top Hat profile can be changed (same ratio) by an additional spherical lens. For a convex lens the size of the Top Hat profile and the working distance becomes smaller. For a concave lens the size of the Top Hat profile and the working distance becomes bigger.

The new working distance and the size of the Top Hat profile can be calculated:
for focal length $\mathrm{f}>0 \mathrm{~mm}$ (additional convex
Working distance $=\frac{250 \mathrm{~mm} \cdot f}{250 \mathrm{~mm}+f}$ ens) respectively focal length $\mathrm{f}<-250 \mathrm{~mm}$ (additional concave lens); s->0

Square Top HatSize $=\left(\frac{4 m m \cdot \text { working distance }}{250 \mathrm{~mm}}\right)^{2}=\left(\frac{4 m m \cdot f}{250 m m+f}\right)^{2}$

ADJUSTMENT OF LENGTH OF HOMOGENEOUS LINE BY ADDITIONAL SPHERICAL LENS

GAUSS-TO-TOP-HAT BEAM SHAPING LENS - GTH-4-2.2FA

Working distance of this lens is given by the focal length of an additional lens, which is always needed. For instance if an additional lens $f=100 \mathrm{~mm}$ is used, Top Hat appears at 100 mm behind additional lens. So GTH-4-2.2FA could be easily put in front of objectives for example. The distance between GTH-4-2.2FA and additional lens is not critical (up to several tens of centimeters). The full fan angle of Top-Hat generation for GTH-4-2.2FA is 2.2 mrad. This leads to Top-Hat sizes:

Focal length, $\mathbf{m m}$	Top hat square size, $\mathbf{m m}$	Working distance, $\mathbf{m m}$
+50	0.11×0.11	50
+100	0.22×0.22	100
+1000	2.2×2.2	1000
+2000	4.4×4.4	2000

GTH-4-2.2FA OPERATION SPECIFICATIONS

Recommended operation wavelength range	$400-1550 \mathrm{~nm}$
Input beam	TEM 00, diameter $\left(1 / \mathrm{e}^{2}\right): 4.0 \pm 0.15 \mathrm{~mm}$
Achievable Top Hat size	$6 x$ diffraction limited @ 1064 nm, $12 x$ diffraction limited @ 532 nm
Full fan angle of Top-Hat generation	2.2 mrad
Beam energy distribution efficiency	$>95 \%$ of input energy within Top Hat profile
Beam homogenity	$\pm 5 \%$ (rel. to average intensity within Top Hat)
Lens diameter	$12.0+0.0 /-0.1 \mathrm{~mm}$
Lens thickness	$4.0 \pm 0.1 \mathrm{~mm}$

Description	Catalogue number	Price, EUR
Uncoated lens	GTH-4-2.2FA	565
VIS coated lens (400-700 nm (R<1\% per face))	GTH-4-2.2FA-VIS	620
IR coated lens ($700-1300 \mathrm{~nm}(\mathrm{R}<1 \%$ per face))	GTH-4-2.2FA-IR	620

Other specific laser wavelengths are available on request.

GTH-4-2.2FA OPERATION INSTRUCTIONS

GENERAL FUNCTION OF TOP-HAT BEAM SHAPER GTH-4-2.2FA

The Top-Hat beam shaper GTH-4-2.2FA is generating a square Top-Hat profile with a full fan angle of 2.2 mrad. To get best results it is necessary to use a Gaussian TEM ${ }_{00}$ input beam with a diameter of $4 \mathrm{~mm} @ 1 / \mathrm{e}^{2}$. For all setups using GTH beam shaper the user has to consider that the free aperture along the total beam path has to be at least 2.2 (better 2.5) times bigger than the beam diameter @ $1 / \mathrm{e}^{2}$.

OPTICAL SETUP FOR TOP-HAT BEAM SHAPER GTH-4-2.2FA

There are different possibilities to integrate the GTH-4-2.2 beam shaper into an optical setup.

1. Beam shaper directly in front of focusing optic/objective (Top Hat size >100 $\boldsymbol{\mu m}$).

Top Hat size is determined by focal length (f) of focusing optic/ objective and can be calculated as follows: $\frac{2.2}{1000} \cdot \mathrm{f}$

By introducing the GTH-4-2.2FA into the beam path in front of a lens/objective the initial diffraction limited Gaussian spot will be transformed into a square homogeneous Top-Hat profile.
The necessary beam diameter at the position of GTH-4-2.2FA is 4 mm @ $1 / \mathrm{e}^{2}$.
The resulting Top-Hat size is given by: $\frac{2.2}{1000} \cdot$ focal length, for example with $\mathrm{f}=50 \mathrm{~mm}=>110 \mu \mathrm{~m}$.

2. Beam shaper in front of beam expander (Top Hat size <100 $\boldsymbol{\mu m}$)

Top Hat size is determined by numerical aperture (NA) of focused beam and can be calculated as follows:

$$
\approx \frac{4 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 6 x \text { diffraction limited @ } 1064 \mathrm{~nm}(12 x @ 532 \mathrm{~nm})
$$

To achieve Top Hat sizes smaller than $100 \mu \mathrm{~m}$ it's recommended to introduce the GTH-4-2.2FA into the beam path in front of a beam expander. Initially the necessary input beam diameter of $4 \mathrm{~mm} @ 1 / \mathrm{e}^{2}$ is passing the GTH. Afterwards the beam is expanded and focused on working plane. The initial diffraction limited Gaussian spot at focal plane will be transformed into a square homogeneous Top-Hat profile. The resulting Top-Hat size is given by:

$$
\approx \frac{4 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 6 x \text { diffraction limited @ } 1064 \mathrm{~nm}(12 x @ 532 \mathrm{~nm})
$$

NA represents the numerical aperture of focused beam and is given by：

$$
\text { NA }=\frac{\text { beam radius @ focusing optic }}{\text { focal length of focusing optic }}
$$

3．Beam shaper within beam expander（Top Hat size $\mathbf{< 1 0 0} \boldsymbol{\mu m}$ ）

Top Hat size is determined by numerical aperture（NA）of focused beam and can be calculated as follows：

$$
\approx \frac{4 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 6 x \text { diffraction limited @ } 1064 \mathrm{~nm}(12 x @ 532 \mathrm{~nm})
$$

A further and even more flexible possibility is to introduce GTH－4－2．2FA into the beam path within a beam expander．The user has the possibility for an easy＂fine tuning＂of beam diameter at the position of GTH－4－2．2FA by shifting shaper along z－axis．It＇s justnecessary to consider that the beam diameter at the position of GTH is 4 mm ＠ $1 / \mathrm{e}^{2}$ ． The resulting Top－Hat size is given by：

$$
\approx \frac{4 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 6 x \text { diffraction limited @ } 1064 \mathrm{~nm}(12 x @ 532 \mathrm{~nm})
$$

NA represents the numerical aperture of focused beam and is given by：

$$
\text { NA }=\frac{\text { beam radius @ focusing optic }}{\text { focal length of focusing optic }}
$$

HOMOGENEOUS LINE GENERATION WITH ADDITIONAL CYLINDRICAL LENS

Line thickness fixed，near diffraction limited．

If an additional cylindrical lens is used，one can generate homogeneous line profiles．By varying the distance I the width of line profile（short axis）can be changed from near diffraction limited size to several millimeters．We recommend the use of a cylindrical lens with a focal length of $f=2.25 \mathrm{~m}$ ．

GAUSS－TO－TOP－HAT BEAM SHAPING LENS－GTH－3．6－1．75FA

Working distance of this lens is given by the focal length of an additional lens，which is always needed．
For instance if an additional lens $f=100 \mathrm{~mm}$ is used，Top Hat appears at 100 mm behind additional lens．So GTH－3．6－1．75FA could be easily put in front of objectives for example．
The distance between GTH－3．6－1．75FA and additional lens is not critical （up to several tens of centimeters）．
The full fan angle of Top－Hat generation for GTH－3．6－1．75FA is 1.75 mrad ． This leads to Top－Hat sizes：

Focal length， $\mathbf{m m}$	Top hat square size， $\mathbf{m m}$	Working distance， $\mathbf{m m}$
+50	0.088×0.088	50
+100	0.175×0.175	100
+1000	1.75×1.75	1000

GTH－3．6－1．75FA OPERATION SPECIFICATIONS

Recommended operation wavelength range	400－1550 nm
Necessary free aperture	always $2.2 x$ beam diameter＠ $1 / \mathrm{e}^{2}$ ， along total beam path
Input beam	TEM ${ }_{00}$ ，diameter（ $1 / \mathrm{e}^{2}$ ）： $3.6 \pm 0.15 \mathrm{~mm}$
Achievable Top Hat size＠1／e ${ }^{2}$	5x diffraction limited＠ 1064 nm ， 10x diffraction limited＠ 532 nm
Full fan angle of Top－Hat generation	1.75 mrad
Beam energy distribution efficiency	＞95\％of input energy within Top Hat profile
Beam homogenity	$\pm 5 \%$（rel．to average intensity within Top Hat）
Lens diameter	$12.0+0.0 /-0.1 \mathrm{~mm}$
Lens thickness	$2.0 \pm 0.1 \mathrm{~mm}$

Description	Catalogue number	Price，EUR
Uncoated lens	GTH－3．6－1．75FA	565
VIS coated lens（ $400-700 \mathrm{~nm}(\mathrm{R}<1 \%$ per face））	GTH－3．6－1．75FA－VIS	620
IR coated lens（ $700-1300 \mathrm{~nm}(\mathrm{R}<1 \%$ per face $)$ ）	GTH－3．6－1．75FA－IR	620

[^1]
GENERAL FUNCTION OF TOP-HAT BEAM SHAPER GTH-3.6-1.75FA

The Top-Hat beam shaper GTH-3.6-1.75FA is generating a square Top-Hat profile with a full fan angle of 1.75 mrad. To get the best results it is necessary to use a Gaussian TEM_{00} input beam with a diameter of 3.6 mm @ $1 / \mathrm{e}^{2}$.

For all setups using GTH beam shaper the user has to consider that the free aperture along the total beam path has to be at least 2.2 (better 2.5) times bigger than the beam diameter @ 1/e ${ }^{2}$.

OPTICAL SETUP FOR TOP-HAT BEAM SHAPER GTH-3.6-1.75FA

There are different possibilities to integrate the GTH-3.6-1.75FA beam shaper into an optical setup.

1. Beam shaper directly in front of focusing optic/objective (Top Hat size @ $1 / \mathrm{e}^{2}>90 \mu \mathrm{~m}$).

Top Hat size is determined by focal length (f) of focusing optic/objective and can be calculated as follows: $\frac{1.75}{1000} \cdot \mathrm{f}$

By introducing the GTH-3.6-1.75FA into the beam path in front of a lens/objective the initial diffraction limited Gaussian spot will be transformed into a square homogeneous Top-Hat profile.
The necessary beam diameter at the position of GTH-3.6-1.75FA is 3.6 mm @ $1 / \mathrm{e}^{2}$.

The resulting Top-Hat size is given by: $\frac{1.75}{1000} \cdot$ focal length, for example with $\mathrm{f}=50 \mathrm{~mm}=>87.5 \mu \mathrm{~m}$.

2. Beam shaper in front of beam expander

(Top Hat size @ $1 / \mathrm{e}^{2}<90 \mu \mathrm{~m}$).
Top Hat size is determined by numerical aperture (NA) of focused beam and is given by:

$$
\approx \frac{3.2 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 5 x \text { diffraction limited @ } 1064 \mathrm{~nm}(10 x @ 532 \mathrm{~nm})
$$

To achieve Top Hat sizes smaller than $90 \mu \mathrm{~m}$ it's recommended to introduce the GTH-3.6-1.75FA into the beam path in front of a beam expander. Initially the necessary input beam diameter of 3.6 mm @ $1 / \mathrm{e}^{2}$ is passing the GTH. Afterwards the beam is expanded and focused on working plane. The initial diffraction limited Gaussian spot at focal plane will be transformed into a square homogeneous Top-Hat profile. The resulting Top-Hat size is given by:

$$
\approx \frac{3.2 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 5 x \text { diffraction limited @ } 1064 \mathrm{~nm}(10 x @ 532 \mathrm{~nm})
$$

NA represents the numerical aperture of focused beam and is given by:

$$
N A=\frac{\text { beam radius @ focusing optic }}{\text { focal length of focusing optic }}
$$

3. Beam shaper within beam expander (Top Hat size @ $1 / \mathrm{e}^{2}<90 \mu \mathrm{~m}$). Top Hat size is determined by numerical aperture (NA) of focused beam and is given by:

$$
\approx \frac{3.2 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 5 x \text { diffraction limited @ } 1064 \mathrm{~nm}(10 x @ 532 \mathrm{~nm})
$$

A further and even more flexible possibility is to introduce GTH-3.6-1.75FA into the beam path within a beam expander. The user has the possibility for an easy "fine tuning" of beam diameter at the position of GTH-3.6-1.75FA by shifting shaper along z-axis. It's just necessary to consider that the beam diameter at the position of GTH is 3.6 mm @ $1 / \mathrm{e}^{2}$. The resulting Top-Hat size is given by:

$$
\approx \frac{3.2 \mu \mathrm{~m}}{\mathrm{NA}} \Rightarrow \approx 5 x \text { diffraction limited @ } 1064 \mathrm{~nm}(10 x @ 532 \mathrm{~nm})
$$

NA represents the numerical aperture of focused beam and is given by:

$$
N A=\frac{\text { beam radius @ focusing optic }}{\text { focal length of focusing optic }}
$$

HOMOGENEOUS LINE GENERATION WITH ADDITIONAL CYLINDRICAL LENS

If an additional cylindrical lens is used, one can generate homogeneous line profiles. By varying the distance I the width of line profile (short axis) can be changed from near diffraction limited size to several millimeters. We recommend the use of a cylindrical lens or lens system with a focal length of $=1.8 \mathrm{~m}$.

TOP HAT BEAM SHAPING LENS FROM UVFS－FBS

FEATURES

＞New Diffractive Beam Shaping Concept based on Fourier methods
＞Transforming Gaussian TEM 00 beam into square or round homogeneous Top－Hat profile
＞Top Hat size is near diffraction limited and is given by：$\sim \lambda / N A$
）Achievable Top Hat sizes： 1 － $200 \mu \mathrm{~m}$

FBS－TOP－HAT FUNDAMENTAL BEAM MODE SHAPER

Without FBS Beam Shaper：Gaussian－profile at focal plane

With FBS Beam Shaper：Top－Hat－profile at focal plane
－FBS works together with focusing system（FS）
－Top Hat size just depends on wavelength（ λ ）and numerical aperture （NA）of focused beam
－Distance d between FBS and FS up to several meters

INTENSITY DISTRIBUTION AT FOCAL PLANE

Main FBS advantages：
－Smallest achievable Top－Hat size：\approx always 1，5x of diffraction limited Gaussian－spot＠1／e ${ }^{2}$
－Achievable Top Hat profiles：square or round
－Diffraction efficiency：＞95\％of energy in Top Hat
－Homogeneity：modulation $< \pm 2.5 \%$
－Depth of focus：similar as for Gaussian beam
－Insensitive to misalignment，ellipticity and input diameter variation： $\pm 5-10 \%$

SPECIFICATIONS

Material	fused silica	
Diameter	25.4 mm	tolerance $\pm 0.1 \mathrm{~mm}$
Input Beam	TEM 00 ，different models for diameter＠1／e ${ }^{2}$ ： 2.0 ．．． 10.0 mm with 0.5 mm step	tolerance $\pm 5 \%$
Necessary Free Aperture	2.2 x （or better 2.5 x ）beam diameter＠ $1 / \mathrm{e}^{2}$	along total beam path
Top Hat Size	1.5 x diffraction limited Gaussian spot	square form（round optional）
Homogenity	$\pm 2.5 \%$	rel．to average intensity within tophat
Wavelength	different models for： $1064 \mathrm{~nm}, 532 \mathrm{~nm}$ or 355 nm	others on request
Transmission	＞99\％	AR／AR coating
Efficiency	＞90\％	of input energy within tophat profile
Damage Threshold	$4 \mathrm{~J} / \mathrm{cm}^{2}$＠ $532 \mathrm{~nm}, 10 \mathrm{~ns}$	
Free Aperture	23 mm	

FBS OPERATION INSTRUCTIONS

There are different possibilities to integrate the FBS beam shaper into an optical setup.

1. Beam shaper directly in front of a focusing optic/objective

By introducing the FBS beam shaper into the beam path in front of a lens/objective the initial diffraction limited Gaussian spot will be transformed into a homogeneous Top-Hat profile.
When a Gaussian TEM $_{00}$ input beam with a diameter of 5 mm @ $1 / \mathrm{e}^{2}$ is used the diameter of the free aperture along the total beam path have to be at least 11 mm (better 13 mm).
If for example a wavelength with 532 nm , a Gaussian TEM_{00} input beam with a diameter of $5 \mathrm{~mm} @ 1 / \mathrm{e}^{2}$ and a focusing lens with $\mathrm{f}=160 \mathrm{~mm}$ is used, ones will get a homogeneous Top Hat profile with a diameter of $34 \mu \mathrm{~m}$.

2. Beam shaper in front of a beam expander

There is also the possibility to introduce the FBS beam shaper into the beam path in front of a beam expander. This leads to a higher numerical aperture of the focused beam and to a smaller Top Hat profile. Example: A Gaussian beam with a diameter of $5 \mathrm{mm@1} / \mathrm{e}^{2}$ illuminates the FBS beam shaper and is afterwards increased by a beam expander to a beam diameter of 8 mm . With an focusing optic with $\mathrm{f}=50 \mathrm{~mm}$ the user can generate a Top Hat with a diameter of $7 \mu \mathrm{~m}$. The needed free aperture increases with the expanded beam. For a beam with a diameter of 8 mm the free aperture has to be at least 18 mm .

3. Beam shaper within a beam expander

A further and even more flexible possibility is to introduce the FBS beam shaper into the beam path within a beam expander. The user has the possibility for an easy "fine tuning" of beam diameter at the position of FBS beam shaper by shifting shaper along z -axis.

SCRIBING OF CIGS-SOLAR CELLS

- Wasted area, reducing efficiency \rightarrow need of smallest scribing lines
- Cut quality influence efficiency \rightarrow need of small HAZ, no debris, smooth edges
- High scanning speed for high throughput \rightarrow need of small pulse overlap

P1-„Scribing"

Gaussian Profile

FBS-Top-Hat Profile small overlap, smooth edges

Removal of a front contact in $\mathrm{ZnO}(1 \mu \mathrm{~m}) / \mathrm{CIGS} / \mathrm{Mo} / \mathrm{PI}$ structure. Laser PL10100/SH, $10 \mathrm{ps}, 370 \mathrm{~mW}, 100 \mathrm{kHz}, 532 \mathrm{~nm}$; scanning speed $4.3 \mathrm{~m} / \mathrm{s}$, single pass.

P3-„Scribing"

Gaussian Profile

FBS-Top-Hat Profile small HAZ, smooth edges

Tilted SEM pictures of the P 3 scribe in $\mathrm{ZnO}(1 \mu \mathrm{~m}) / \mathrm{CIGS} / \mathrm{Mo} / \mathrm{PI}$ structure. Laser PL10100/SH, 10 ps, $370 \mathrm{~mW}, 100 \mathrm{kHz}, 532 \mathrm{~nm}$; scanning speed $60 \mathrm{~mm} / \mathrm{s}$, single pass.

Raciukaitis et. al, JLMN-Vol. 6, No. 1, 2011

RECOMMENDED ACCESSORIES

Zoom Beam	
Expander	
Seepage 5.4	Two Axes Translation Polarizer Holder $840-0240$ Find more at EksmaOptics.com

CONTINUOUSLY VARIABLE ATTENUATOR／BEAMSPLITTER－990－0060

FEATURES

＞Divides laser beam into two beams of manually adjustable intensity ratio
＞Convenient 90° angle between reflected and transmitted beams
＞Negligible beam deviation
＞Large dynamic range
＞Broadband transmission
＞Weight -0.16 kg

Continuously Variable Attenuator／ Beamsplitter is designed to be used for laser pulses as short as 100 fs ．It consists of 2 high－ performance polarizing optics components placed in precision opto－mechanical holder 840－0197．Variable attenuator／beamsplitter incorporates a high－performance Polarizing Cube Beamsplitter which reflects s－polarized light at 90° while transmitting p－polarized light．

A rotating $\lambda / 2$ waveplate is placed in the incident polarized laser beam．The intensity ratio of those two beams may be continuously varied without alteration of other beam parameters by rotating the waveplate． The intensity of either exit beam，and their intensity ratio，can be controlled over a wide dynamic range．Pure p－polarization could be selected for maximum transmission，or pure s－polarization for maximum attenuation of the transmitted beam．

ACHROMATIC AIR－SPACED WAVEPLATE AND HIGH POWER BROADBAND CUBE POLARIZING BEAMSPLITTER

SPECIFICATIONS

Extinction ratio	$\mathrm{Ts} / \mathrm{Tp}<1: 200$
Clear aperture	11 mm

FOR BROADBAND REGION

Central wavelength， $\mathbf{n m}$	LDT，J／cm		
$450-680$	$1^{1)}$	Catalogue number	Price，EUR
$700-1000$	$2^{2)}$	$990-0060-11$ VIS	1030

[^2]2）LDT measured at $1064 \mathrm{~nm}, 10 \mathrm{~Hz}, 10 \mathrm{~ns}$ pulses．

MULTIPLE ORDER HALF WAVEPLATE AND HIGH POWER CUBE POLARIZING BEAMSPLITTER

SPECIFICATIONS

Extinction ratio	$\mathrm{Ts} / \mathrm{Tp}<1: 500$
Clear aperture	11 mm

Central wavelength， $\mathbf{n m}$	LDT，J／cm ${ }^{\mathbf{2}}$	Catalogue number	Price，EUR
1064	15	$990-0061-11$	710
1030	15	$990-0062-11$	710
800	8	$990-0063-11$	710
532	6	$990-0064-11$	710
355	3	$990-0065-11$	740

[^3]
VARIABLE ATTENUATORS FOR LINEARLY POLARIZED LASER BEAM - 990-0070

FEATURES

> Divides laser beam into two parallel beams of manually adjustable intensity ratio
> Large dynamic range
> Transmitted beam shift $\sim 0.5 \mathrm{~mm}$
> High optical damage threshold

Note: Movable base 820-0090, Rod Holder 820-0050-02 and standard rod should be ordered seperately.

This variable attenuator/beamsplitter consists of special design opto-mechanical Adapter and precision opto-mechanical holder 840-0197. Two Thin Film Brewster type polarizers, which reflect s-polarized light while transmitting p-polarized light, are housed into Adapter. Quartz Half Waveplates are housed in rotating holder 840-0197.

The intensity ratio of those two beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of either exit beam,

FOR Nd:YAG LASER APPLICATIONS

Aperture diameter	17 mm
Damage threshold	$5 \mathrm{~J} / \mathrm{cm}^{2}$ pulsed at 1064 nm, typical
Polarization Contrast (after 1st polarizer)	$>1: 200$
Polarization Contrast (after 2nd polarizer)	$>1: 500$
Weight	0.35 kg

FOR FEMTOSECOND APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
257	$990-0070-257$	945
266	$990-0070-266$	945
343	$990-0070-343$	840
400	$990-0070-400$	740
$390-410$	$990-0070-400 \mathrm{~B}$	890
515	$990-0070-515$	740
$505-525$	$990-0070-515 \mathrm{~B}$	890
800	$990-0070-800$	740
$780-820$	$990-0070-800 \mathrm{~B}$	890
1030	$990-0070-1030$	740
$1010-1050$	$990-0070-1030 \mathrm{~B}$	890

Zero order optically contacted half waveplate is housed in rotating holder 840-0197 for femtosecond laser pulses (laser damage threshold: $>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fsec}$ pulse, 800 nm typical).
or their intensity ratio, can be controlled over a wide dynamic range. P-polarization could be selected for maximum transmission, or highpurity s-polarization could be reflected when maximum attenuation of the transmitted beam takes place. The holder 840-0197 allows to adjust Angle Of Incidence of the Thin Film Brewster type polarizers by $\pm 2^{\circ}$ and to get the maximum polarization contrast.

FOR Nd:YAG LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0070-266 \mathrm{H}^{*}$	1020
355	$990-0070-355$	750
532	$990-0070-532$	650
1064	$990-0070-1064$	650

Multi order half waveplate is housed in rotating holder 840-0197 for Nd:YAG laser pulses (laser damage threshold: $5 \mathrm{~J} / \mathrm{cm}^{2}$ pulsed at 1064 nm , typical).

* With Zero Order Air-Spaced half waveplate.

FOR HIGH POWER
FEMTOSECOND LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
257	$990-0070-257 \mathrm{H}$	1020
266	$990-0070-266 \mathrm{H}$	1020
343	$990-0070-343 \mathrm{H}$	915
400	$990-0070-400 \mathrm{H}$	815
$390-410$	$990-0070-400 \mathrm{HB}$	965
515	$990-0070-515 \mathrm{H}$	815
$505-525$	$990-0070-515 \mathrm{HB}$	965
800	$990-0070-800 \mathrm{H}$	815
$780-820$	$990-0070-800 \mathrm{HB}$	965
1030	$990-0070-1030 \mathrm{H}$	815
$1010-1050$	$990-0070-1030 \mathrm{HB}$	965

Zero Order Air-Spaced half waveplate is housed in rotating holder 840-0197 for high power femtosecond applications (laser damage threshold: > $100 \mathrm{~mJ} / \mathrm{cm}^{2}$, 50 fsec pulse, 800 nm typical).

FOR FEMTOSECOND APPLICATIONS

Aperture diameter	17 mm
Damage threshold	$\begin{array}{c}>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs} \text { pulse at } \\ 800 \mathrm{~nm}, \text { typical }\end{array}$
for high power	
laser applications	

at 800 \mathrm{~nm}, typical\end{array}, $$
\begin{array}{l}\mathrm{t}<4 \mathrm{fs} \text { for } 100 \mathrm{fs} \text { Ti:Sapphire } \\
\text { laser pulses }\end{array}
$$\right]\)

RELATED PRODUCTS

Beam dumps
$990-0800$,
$990-0820$
Seepage 5.22

MOTORIZED VARIABLE ATTENUATOR FOR LINEARLY POLARIZED LASER BEAM - 990-0070M

This motorized variable attenuator/beamsplitter consists of special design opto-mechanical Adapter and precision opto-mechanical holder 840-0193. Two Thin Film Brewster type polarizers, which reflect s-polarized light while transmitting p-polarized light, are housed into Adapter. Quartz Half Waveplates are housed in motorized rotation stage 960-0161.
The intensity ratio of those two beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of either exit beam, or their intensity ratio, can be controlled over a wide dynamic range. P-polarization could be selected for maximum transmission, or high-purity s-polarization could be reflected when maximum attenuation of the transmitted beam takes place. The holder 840-0193 allows to adjust Angle Of Incidence of the Thin Film Brewster type polarizers by $\pm 2^{\circ}$ and to get the maximum polarization contrast.

ORDERING INFORMATION

Please note: these motorized variable attenuators for linearly polarized laser beam are provided without controller and power supply. If you would like to order the complete solution (controller 980-1045 and power supply: PS12-1.5-4), please ad CP to code and 600 EUR to price.

Example:

990-0070-266M - motorized attenuator without controller and power supply.

Price - 1725 EUR
990-0070-266M+CP - motorized attenuator with controller and power supply.

Price - 2325 EUR

FOR Nd:YAG LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0070-266 \mathrm{HM}^{*}$	1800
355	$990-0070-355 \mathrm{M}$	1530
532	$990-0070-532 \mathrm{M}$	1430
1064	$990-0070-1064 \mathrm{M}$	1430

Multi order half waveplate is housed in Motorized Rotation Stage 960-0161 and Polarizer with adapter in Kinematic Optical Mount 840-0193 for Nd:YAG laser application (laser damage threshold: $5 \mathrm{~J} / \mathrm{cm}^{2}, 10 \mathrm{~ns}$ pulses, 10 Hz at 1064 nm , typical).

* With Zero Order Air-Spaced half waveplate.

FOR FEMTOSECOND APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
257	$990-0070-257 \mathrm{M}$	1725
266	$990-0070-266 \mathrm{M}$	1725
343	$990-0070-343 \mathrm{M}$	1620
400	$990-0070-400 \mathrm{M}$	1520
$390-410$	$990-0070-400 \mathrm{BM}$	1670
515	$990-0070-515 \mathrm{M}$	1520
$505-525$	$990-0070-515 \mathrm{BM}$	1670
800	$990-0070-800 \mathrm{M}$	1520
$780-820$	$990-0070-800 \mathrm{BM}$	1670
1030	$990-0070-1030 \mathrm{M}$	1520
$1010-1050$	$990-0070-1030 \mathrm{BM}$	1670

Zero order optically contacted half waveplate is housed in Motorized Rotation Stage 960-0161 and Polarizer with adapter in Kinematic Optical Mount 840-0193 for femtosecond laser application (laser damage threshold: $>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50$ fsec pulse, 800 nm typical).

FOR HIGH POWER FEMTOSECOND APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
257	$990-0070-257 \mathrm{HM}$	1800
266	$990-0070-266 \mathrm{HM}$	1800
343	$990-0070-343 \mathrm{HM}$	1695
400	$990-0070-400 \mathrm{HM}$	1595
$390-410$	$990-0070-400 \mathrm{HBM}$	1745
515	$990-0070-515 \mathrm{HM}$	1595
$505-525$	$990-0070-515 \mathrm{HBM}$	1745
800	$990-0070-800 \mathrm{HM}$	1595
$780-820$	$990-0070-800 \mathrm{HBM}$	1745
1030	$990-0070-1030 \mathrm{HM}$	1595
$1010-1050$	$990-0070-1030 \mathrm{HBM}$	1745

Zero Order Air-Spaced half waveplate is housed in Motorized Rotation Stage 960-0161 and Polarizer with adapter in Kinematic Optical Mount 840-0193 for high power femtosecond laser application (laser damage threshold: $>100 \mathrm{~mJ} / \mathrm{cm}^{2}, 50$ fsec pulse, 800 nm typical).

BROADBAND VARIABLE ATTENUATOR FOR FEMTOSECOND LASER PULSES - 990-0070HBBI70

FEATURES

> Divides laser beam into two parallel beams of manually adjustable intensity ratio
> Large dynamic range
> Transmitted beam shift ~ 2.6 mm
> High optical damage threshold

990-0070-800HBBI70M

This variable attenuator/beamsplitter consists of a special design opto-mechanical adapter and a precision opto-mechanical holder 840-0197. Two thin film polarizers, operating at $\mathrm{AOI}=70^{\circ}$ and reflecting s-polarized light while transmitting p-polarized light, are housed into the adapter. A quartz zero order air-spaced half waveplate is housed into the rotating holder 840-0197.
The intensity ratio of outgoing two parallel beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of the

exit beam or outgoing beams intensity ratio can be controlled over a wide dynamic range. P-polarized beam is transmitted straightly with a 2.6 mm shift and s-polarized beam (after 2 reflections) is parallel to the outgoing p-polarized beam, just separated by 28 mm . The 840-0197 holder allows to adjust angle of incidence of the thin film polarizers by $\pm 2^{\circ}$ and to achieve the maximum polarization contrast.

SPECIFICATIONS

Aperture diameter	12 mm
Operating bandwidth	100 nm
Damage treshold	$50 \mathrm{~mJ} / \mathrm{cm}^{2}$ pulsed at $800 \mathrm{~nm}, 50 \mathrm{fsec}, 50 \mathrm{~Hz}$
Polarization contrast (after 1st polarizer)	$>1: 200$
Polarization contrast (after 2nd polarizer)	$>1: 500$

ORDERING INFORMATION

Please note: these motorized variable attenuators for linearly polarized laser beam are provided without controller and power supply. If you would like to order the complete solution (controller 980-1045 and power supply: PS12-1.5-4), please ad CP to code and 600 EUR to price.

Example:
990-0070-800HBBi 70 - motorized attenuator without controller and power supply.

Price - 2050 EUR
990-0070-800HBBi70+CP - motorized attenuator with controller and power supply.

Price - 2650 EUR

MANUAL ATTENUATORS

Wavelength, nm	Catalogue number	Price, EUR
$750-850$	$990-0070-800 \mathrm{HBBi} 70$	1270
$980-1080$	$990-0070-1030 \mathrm{HBBi} 70$	1270

MOTORIZED ATTENUATORS

Wavelength, nm	Catalogue number	Price, EUR
$750-850$	$990-0070-800 \mathrm{HBBi} 70 \mathrm{M}$	2050
$980-1080$	$990-0070-1030 \mathrm{HBBi} 70 \mathrm{M}$	2050

990-0070-800HBBi70

990-0070-800НвBі70М

Note：Solid Base Height Extender 820－0210 and Standard Rod 820－0020－20 should be ordered separately

This variable attenuator／beamsplitter consists of special design opto－mechanical adapter for polarizer at $56^{\circ} 840-0117 \mathrm{~A}$ or 840－0118A and precision opto－mechanical holder 840－0197． Thin Film Brewster type polarizer，which reflect s－polarized light at 56° while transmitting p－polarized light，is housed into adapter for polarizer at 56° ．Quartz Half Waveplates are housed in rotating holder 840－0197．

The intensity ratio of those two beams may be continuously varied without alteration of other beam parameters by rotating the waveplate．The intensity of either exit beam，

FOR Nd：YAG LASER APPLICATIONS

Aperture diameter	10 mm
Damage threshold	$5 \mathrm{~J} / \mathrm{cm}^{2}$ pulsed at 1064 nm, typical
Polarization Contrast	$>1: 200$
Weight	0.25 kg

FOR FEMTOSECOND APPLICATIONS

Wavelength， $\mathbf{n m}$	Catalogue number	Price， EUR
257	$990-0071-257$	625
266	$990-0071-266$	625
343	$990-0071-343$	600
400	$990-0071-400$	550
$390-410$	$990-0071-400 \mathrm{~B}$	650
515	$990-0071-515$	550
$505-525$	$990-0071-515 \mathrm{~B}$	650
800	$990-0071-800$	550
$780-820$	$990-0071-800 \mathrm{~B}$	650
1030	$990-0071-1030$	550
$1010-1050$	$990-0071-1030 \mathrm{~B}$	650

Zero order optically contacted half waveplate is housed in rotating holder 840－0197 for femtosecond laser pulses（laser damage threshold：$>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50$ fs pulse at 800 nm ，typical）．
or their intensity ratio，can be controlled over a wide dynamic range．P－polarization could be selected for maximum transmission，or high－ purity s－polarization could be reflected when maximum attenuation of the transmitted beam takes place．The holder 840－0197 allows to adjust Angle Of Incidence of the Thin Film Brewster type polarizer by $\pm 2^{\circ}$ and to get the maximum polarization contrast．

FOR Nd：YAG LASER APPLICATIONS

Wavelength， $\mathbf{n m}$	Catalogue number	Price， EUR
266	$990-0071-266 \mathrm{H}^{*}$	690
355	$990-0071-355$	475
532	$990-0071-532$	445
1064	$990-0071-1064$	445

Multi order half waveplate is housed in rotating holder 840－0197 for Nd：YAG laser pulses（laser damage threshold： $5 \mathrm{~J} / \mathrm{cm}^{2}$ pulsed at 1064 nm ，typical）．
＊With Zero Order Air－Spaced half waveplate．

FOR HIGH POWER
FEMTOSECOND LASER APPLICATIONS

Wavelength， nm	Catalogue number	Price， EUR
257	$990-0071-257 \mathrm{H}$	690
266	$990-0071-266 \mathrm{H}$	690
343	$990-0071-343 \mathrm{H}$	665
400	$990-0071-400 \mathrm{H}$	615
$390-410$	$990-0071-400 \mathrm{HB}$	715
515	$990-0071-515 \mathrm{H}$	615
$505-525$	$990-0071-515 \mathrm{HB}$	715
800	$990-0071-800 \mathrm{H}$	615
$780-820$	$990-0071-800 \mathrm{HB}$	715
1030	$990-0071-1030 \mathrm{H}$	615
$1010-1050$	$990-0071-1030 \mathrm{HB}$	715

Zero Order Air－Spaced half waveplate is housed in rotating holder 840－0197 for high power femtosecond applications（laser damage threshold：$>100 \mathrm{~mJ} / \mathrm{cm}^{2}$ ， 50 fsec pulse， 800 nm typical）．

FOR FEMTOSECOND APPLICATIONS

Aperture diameter	10 mm
Damage threshold	$>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs}$ pulse at 800 nm, typical
for high power laser applications	$>100 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fsec}$ pulse， 800 nm typical
Time dispersion	$\mathrm{t}<4 \mathrm{fs}$ for 100 fs Ti：Sapphire laser pulses
Polarization Contrast	$>1: 200$
Weight	0.25 kg

MOTORIZED VARIABLE ATTENUATOR FOR LINEARLY POLARIZED LASER BEAM - 990-0071M

This motorized variable attenuator/beamsplitter consists of special design opto-mechanical adapter for polarizer at $56^{\circ} 840-0117 \mathrm{~A}$ or 840-0118A and precision opto-mechanical holder 840-0193. Thin Film Brewster type polarizer, which reflect s-polarized light at 56° while transmitting p-polarized light, is housed into adapter for polarizer at 56°. Quartz Half Waveplates are housed in motorized rotation stage 960-0161.

The intensity ratio of those two beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of either exit beam, or their intensity ratio, can be controlled over a wide dynamic range. P-polarization could be selected for maximum transmission, or high-purity s-polarization could be reflected when maximum attenuation of the transmitted beam takes place. The holder 840-0193 allows to adjust Angle of Incidence of the Thin Film Brewster type polarizer by $\pm 2^{\circ}$ and to get the maximum polarization contrast.

ORDERING INFORMATION

Please note: these motorized variable attenuators for linearly polarized laser beam are provided without controller and power supply. If you would like to order the complete solution (controller 980-1045 and power supply: PS12-1.5-4), please ad CP to code and 600 EUR to price.

Example:
990-0071-266M - motorized attenuator without controller and power supply.

$$
\text { Price - } 1405 \text { EUR }
$$

990-0071-266M+CP - motorized attenuator with controller and power supply.

Price - 2005 EUR

FOR Nd:YAG LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0071-266 \mathrm{HM}^{*}$	1470
355	$990-0071-355 \mathrm{M}$	1260
532	$990-0071-532 \mathrm{M}$	1230
1064	$990-0071-1064 \mathrm{M}$	1230

Multi order half waveplate is housed in Motorized Rotation Stage 960-0161 and Polarizer with adapter in Kinematic Optical Mount 840-0193 for Nd:YAG laser application (laser damage threshold: $5 \mathrm{~J} / \mathrm{cm}^{2}, 10 \mathrm{~ns}$ pulses, 10 Hz at 1064 nm , typical).

* With Zero Order Air-Spaced half waveplate.

FOR HIGH POWER
FOR FEMTOSECOND APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
266	$990-0071-266 \mathrm{M}$	1405
343	$990-0071-343 \mathrm{M}$	1380
400	$990-0071-400 \mathrm{M}$	1330
$390-410$	$990-0071-400 \mathrm{BM}$	1430
515	$990-0071-515 \mathrm{M}$	1330
$505-525$	$990-0071-515 \mathrm{BM}$	1430
800	$990-0071-800 \mathrm{M}$	1330
$780-820$	$990-0071-800 \mathrm{BM}$	1430
1030	$990-0071-1030 \mathrm{M}$	1330
$1010-1050$	$990-0071-1030 \mathrm{BM}$	1430

Zero order optically contacted half waveplate is housed in Motorized Rotation Stage 960-0161 and Polarizer with adapter in Kinematic Optical Mount 840-0193 for femtosecond laser application (laser damage threshold: $>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50$ fsec pulse, 800 nm typical).

VARIABLE ATTENUATOR FOR FEMTOSECOND LASER PULSES - 990-0072

FOR FEMTOSECOND APPLICATIONS

Clear Aperture diameter	22 mm
Damage threshold	$>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs}$ pulse at 800 nm, typical
for high power applications	$>100 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs}$ pulse at 800 nm, typical
Polarization Contrast	$>1: 200$
Transmitted beam shift	$\sim 1 \mathrm{~mm}$
Weight	0.45 kg

A quartz Zero Order (optically contacted) Half Waveplate (for femtosecond applications) or Zero Order Air-Spaced Half Waveplate (for high power applications) Ø25.4 mm are housed in rotating holder 840-0190-01.

FEATURES

) Divides laser beam into two beams of manually adjustable intensity ratio separated by 68° angle
> Large dynamic range
> Trasmitted beam shift ~1 mm
> High optical damage threshold
This variable attenuator/beamsplitter consists of Polarizer Holder 840-0190-01 and Kinematic Mirror/Beamsplitter Mount 840-0056-12. UVFS Thin Film Brewster type polarizer diameter 50.8 mm , which reflect s-polarized light while transmitting p-polarized light, is housed into Beamsplitter Mount 840-005612. A quartz Zero Order (optically contacted) Half Waveplate Ø 25.4 mm (for femtosecond applications), quartz Zero Order Air-Spaced Half Waveplate (for high power femtosecond applications) or quartz Multi Order Half Waveplate Ø25.4 mm (for Nd:YAG laser applications) is housed in rotating polarizer holder 840-0180-A1 and placed in the incident linearly polarized laser beam.
The intensity ratio of those two separated and different polarized beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of either exit beam, or their intensity ratio, can be controlled over a wide dynamic range. P-polarization could be selected for maximum transmission, or high-

Check www.eksmaoptics.com for motorized version 990-0072M

FOR FEMTOSECOND APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0072-266$	950
343	$990-0072-343$	895
400	$990-0072-400$	865
515	$990-0072-515$	865
800	$990-0072-800$	880
$780-820$	$990-0072-800 \mathrm{~B}$	980
1030	$990-0072-1030$	890
$1010-1050$	$990-0072-1030 \mathrm{~B}$	980

purity s-polarization could be reflected when maximum attenuation of the transmitted beam takes place.
The holder 840-0056-12 allows to adjust Angle Of Incidence of the Thin Film Brewster type polarizers by $\pm 4.5^{\circ}$ and to get the maximum extinction contrast. The mounts are on rods, rod holders and Movable Base 820-0090. The optical axis height from the table top can be adjusted in the range 78-88 mm . Other height can be offered as custom changing the standard rods and rod holders into higher.

FOR Nd:YAG LASER APPLICATIONS

Clear Aperture diameter	22 mm
Damage threshold	$>5 \mathrm{~J} / \mathrm{cm}^{2}, 10 \mathrm{~ns}$ pulse, 10 Hz at 1064 nm, typical
Polarization Contrast	$>1: 200$
Transmitted beam shift	$\sim 1 \mathrm{~mm}$
Weight	0.45 kg

A quartz Multi Order Half Waveplate Ø 25.4 mm is housed in rotating holder 840-0180-A1.

FOR Nd:YAG LASER APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
266	$990-0072-266 \mathrm{H}^{*}$	1085
355	$990-0072-355$	765
532	$990-0072-532$	735
1064	$990-0072-1064$	755

* A quartz Zero Order Air-Spaced Half Waveplate clear aperture Ø $\mathbf{2 2} \mathrm{mm}$ is housed in rotating holder 840-0190-01.

FOR HIGH POWER
FEMTOSECOND LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0072-266 \mathrm{H}$	1085
343	$990-0072-343 \mathrm{H}$	1030
400	$990-0072-400 \mathrm{H}$	1000
515	$990-0072-515 \mathrm{H}$	1000
800	$990-0072-800 \mathrm{H}$	1015
$780-820$	$990-0072-800 \mathrm{HB}$	1115
1030	$990-0072-1030 \mathrm{H}$	1025
$1010-1050$	$990-0072-1030 \mathrm{HB}$	1115

VARIABLE ATTENUATOR FOR FEMTOSECOND AND Nd:YAG LASER PULSES - 990-0073

FEATURES

> Divides laser beam into two beams of manually adjustable intensity ratio separated by 68° angle
> Large dynamic range
> Trasmitted beam shift $\sim 1.4 \mathrm{~mm}$
> High optical damage threshold
> Motorized version available on request

This variable attenuator/beamsplitter consists of Polarizer Holder 840-0180-A2 and Kinematic Mirror/Beamsplitter Mount 840-0056-13. UVFS Thin Film Brewster type polarizer Ø 76.2 mm , which reflect s-polarized light while transmitting p-polarized light, is housed into Beamsplitter Mount 840-005613. A quartz Zero Order (optically contacted) Half Waveplate $\emptyset 40 \mathrm{~mm}$ (for femtosecond applications), Zero Order Air-Spaced Half Waveplate (for high power femtosecond applications) or quartz Multi Order Half Waveplate $\varnothing 40 \mathrm{~mm}$ (for Nd:YAG laser applications) is housed in rotating polarizer holder 840-0180-A2 and placed in the incident linearly polarized laser beam.
The intensity ratio of those two separated and different polarized beams may be continuously varied without alteration of other beam parameters by rotating the waveplate. The intensity of either exit beam,

FOR FEMTOSECOND APPLICATIONS

Clear Aperture diameter	36 mm
Damage threshold	$>10 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs}$ pulse at 800 nm, typical
for high power applications	$>100 \mathrm{~mJ} / \mathrm{cm}^{2}, 50 \mathrm{fs}$ pulse at 800 nm, typical
Polarization Contrast	$>1: 200$
Transmitted beam shift	$\sim 1.4 \mathrm{~mm}$
Weight	0.6 kg

A quartz Zero Order (optically contacted) Half Waveplate $\varnothing 40 \mathrm{~mm}$ (for femtosecond applications) or Zero Order Air-Spaced Half Waveplate (for high power applications) is housed in rotating polarizer holder 840-0180-A2.

FOR FEMTOSECOND APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0073-266$	1690
343	$990-0073-343$	1560
400	$990-0073-400$	1540
515	$990-0073-515$	1540
800	$990-0073-800$	1560
$780-820$	$990-0073-800 B$	1790
1030	$990-0073-1030$	1615
$1010-1050$	$990-0073-1030 \mathrm{~B}$	1850

or their intensity ratio, can be controlled over a wide dynamic range. P-polarization could be selected for maximum transmission, or highpurity s-polarization could be reflected when maximum attenuation of the transmitted beam takes place.
The holder 840-0056-13 allows to adjust Angle Of Incidence of the Thin Film Brewster type polarizers by $\pm 4.5^{\circ}$ and to get the maximum extinction contrast. The mounts are on rods, rod holders and Movable Base 820-0090. The optical axis height from the table top can be adjusted in the range 92-98 mm. Other height can be offered as custom changing the standard rods and rod holders into higher.

FOR Nd:YAG LASER APPLICATIONS

Clear Aperture diameter	36 mm
Damage threshold	$>5 \mathrm{~J} / \mathrm{cm}^{2}, 10 \mathrm{~ns}$ pulse, 10 Hz at 1064 nm, typical
Polarization Contrast	$>1: 200$
Transmitted beam shift	$\sim 1.4 \mathrm{~mm}$
Weight	0.6 kg

Quartz Multi Order Half Waveplate $Ø 40 \mathrm{~mm}$ is housed in rotating polarizer holder 840-0180-A2.

FOR Nd:YAG LASER APPLICATIONS

Wavelength, $\mathbf{n m}$	Catalogue number	Price, EUR
266	$990-0073-266 \mathrm{H}^{*}$	1790
355	$990-0073-355$	1460
532	$990-0073-532$	1440
1064	$990-0073-1064$	1515

* Zero Order Air-Spaced half waveplate is housed in rotating holder.

FOR HIGH POWER
FEMTOSECOND LASER APPLICATIONS

Wavelength, nm	Catalogue number	Price, EUR
266	$990-0073-266 \mathrm{H}$	1790
343	$990-0073-343 \mathrm{H}$	1660
400	$990-0073-400 \mathrm{H}$	1640
515	$990-0073-515 \mathrm{H}$	1640
800	$990-0073-800 \mathrm{H}$	1660
$780-820$	$990-0073-800 \mathrm{HB}$	1890
1030	$990-0073-1030 \mathrm{H}$	1715
$1010-1050$	$990-0073-1030 \mathrm{HB}$	1950

FILTERS HOLDER WITH 90º FLIP - 990-0400

FEATURES

>Allows stacking of 5 filters of $\varnothing 25.4 \mathrm{~mm}\left(1^{\prime \prime}\right)$, or 3 filters of $\varnothing 50.8$ (2")
> Fast flipping in and out of beam path
> Available to be used in 90° position
> Has one M4, two M6 and two holes $\varnothing 6.4 \mathrm{~mm}$ for mounting on posts or table bases
) Large aperture allows to attenuate large diameter laser beam
> Black Anodized Aluminium and Brass screws

990-0415

The holder of 1 inch filters 990-0415 allows the fixation of up to 5 filters into 1 inch optics ring holders. The thickness of optical filters (or any other optical elements) to be held is from 0.5 mm to 8.0 mm . Filters can be easily replaced in ring holders. This filter holder allows fast filter removal from beam path flipping it at 90° position. Any position of filters can be fixed with fixing screw. The firm 0° position can be fixed with the second brass screw (included).
The holder of 2 inch filters 990-0423 allows the fixation of up to 3 filters into 2 inch optics ring holders. The thickness of optical filters (or any other optical elements) to be held is from 0.5 mm to 14.0 mm .

The holder 990-0415ND is the same holder $990-0415$ but with Neutral Density filters that operates as step energy attenuator and allows adjusting transmission from 100\% (all 5 filters are at 90° position) till 0.015% (all 5 filters are at 0° position) at visible region. If you need other adjustment you can choose any other Neutral Density filter Ø$\varnothing 25.4 \mathrm{~mm}$.
Using the holder 990-0415 with various color glass or dielectric filters various transmitted band pass regions can be achieved. The Filters Holder with 90° Flip is made of black anodized aluminium and brass screws.

Acceptable filters number	Suitable filters diameter, $\mathbf{m m}$	Clear aperture diameter, $\mathbf{m m}$	Weight, $\mathbf{k g}$,	Catalogue number	Price, EUR
5	25.4	23	0.16	$990-0415$	155
5	25.4	23	0.19	$990-0415 \mathrm{ND}$	250
3	50.8	48	0.22	$990-0423$	145

990-0415 at 0° position (Note: Solid base height extender 820-0210 should be ordered seperately)

RELATED PRODUCTS

Neutral Density Filters $\emptyset 25.4$ mm
See page 1.14

990-0423 at 0° position (Note: Solid base height extender should be ordered seperately)

990-0415 at 0° or 90° position (Note: Solid base height extender 820-0210 should be ordered seperately)

AIR-COOLED BEAM DUMP - 990-0800

990-0800

Beam Dump 990-0800 is designed to block CW or pulsed laser beams. It can be used on beams of up to 50 W in the wavelength range from 0.1 to $30 \mu \mathrm{~m}$.

Due to the design of the beam dump, even if the non-reflective coating is damaged by high intensity pulses, there is no backward reflection.

Aperture	Description	Catalogue number	Price, EUR
48 mm	for beams up to 50 W	$990-0800$	169
20 mm	for beams up to 5 W	$990-0801$	119

Wavelength range	$0.1-30 \mu \mathrm{~m}$
Laser type	pulsed, CW

WATER-COOLED BEAM DUMP - 990-0820

990-0820

Beam Dump 990-0820 is designed to block CW or pulsed laser beams. It is mainly intended for beams 2 inch wide.

The dump is best suited for beams of up to 1 kW from $0.1-30 \mu \mathrm{~m}$ wavelength range. Even if the non-reflective coating is damaged by high intensity pulses, the beam is not reflected back into your optical scheme.
The dump mounts on M6 hole on its back.

SPECIFICATIONS

Wavelength range	$0.1-30 \mu \mathrm{~m}$
Max. handling power	1 kW
Max. energy	$50 \mathrm{~J}(20 \mathrm{~Hz})$
Acceptance aperture	$48 \mathrm{~mm}\left(1.89^{\prime \prime}\right)$
Laser type	pulsed, CW
Weight	1.2 kg

Catalogue number	Price, EUR
$990-0820$	239

[^0]: Other specific laser wavelengths are available on request.

[^1]: Other specific laser wavelengths are available on request．

[^2]: 1）LDT measured at $532 \mathrm{~nm}, 10 \mathrm{~Hz}, 10 \mathrm{~ns}$ pulses．

[^3]: ＊LDT measured at designed wavelength， $10 \mathrm{~Hz}, 10 \mathrm{~ns}$ pulses．

