NONLINEAR CRYSTALS 2.2
Lithium Triborate - LBO 2.2
Beta Barium Borate - BBO 2.4
Cesium Lithium Borate - CLBO 2.6
Potassium Dideuterium Phosphate - KDP, DKDP 2.7
Potassium Titanyl Phosphate - KTP 2.9
Potassium Titanyle Arsenate - KTA 2.11
Lithium Niobate - LiNbO_{3} 2.12
Lithium lodate - LilO_{3} 2.13
Infrared Nonlinear Crystals 2.14
Ultrathin Nonlinear Crystals 2.17
LASER CRYSTALS 2.19
Neodymium Doped Yttrium Aluminium Garnet - Nd:YAG 2.19
Yb-Doped Potassium Gadolinium Tungstate - Yb:KGW, Yb:KYW 2.20
Nd-Doped Potassium Gadolinium Tungstate - Nd:KGW 2.21
Titanium Doped Sapphire - Ti:Sapphire 2.22
TERAHERTZ CRYSTALS 2.23
Semiconductor Terahertz Crystals - GaSe, ZnTe 2.23
RAMAN CRYSTALS 2.24
Crystals for Stimulated Raman Scattering - KGW, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ 2.24
Passive Q-switching Crystals - $\mathrm{Co}^{2+}: \mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{Cr}^{4+}: \mathrm{YAG}$ 2.25
POSITIONERS \& HOLDERS 2.26
Ring Holders for Nonlinear Crystals 830-0001 2.26
Kinematic Positioning Mount 840-0193 2.27
Positioning Mount for Nonlinear Crystal Housing 840-0199 2.27
CRYSTAL OVENS 2.28
Temperature Controller TC2 with Oven CO1 2.28
Compact oven for nonlinear crystals - Heatpoint 2.29

LBO is well suited for various nonlinear optical applications:

- frequency doubling and tripling of high peak power pulsed Nd doped, Ti:Sapphire and Dye lasers
- optical parametric oscillators (OPO) of both Type 1 and Type 2 phase-matching
- non-critical phase-matching for frequency conversion of CW and quasi-CW radiation.

Standard specifications

Flatness	$\lambda / 8$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$10-5$ scratch $\&$ dig (MIL-PRF- 13830 B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

Features

- Wide transparency region
- Broad Type 1 and Type 2
- Non-critical phase-matching (NCPM) range
- Small walk-off angle
- High damage threshold
- Wide acceptance angle
- High optical homogeneity

NCPM SHG temperature dependance of LBO

SHG tuning curves of LBO

We offer:

- Crystals length up to 90 mm and aperture up to $60 \times 60 \mathrm{~mm}$
- ar, bBAR, P -coatings
- Different mounting and repolishing services

Standard Crystals list

Size, mm	θ, deg	φ, deg	Coating	Application	Catalogue number	Price, EUR
$3 \times 3 \times 10$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-401	245
$3 \times 3 \times 15$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-402	325
$4 \times 4 \times 10$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-301	510
$4 \times 4 \times 15$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-302	630
$4 \times 4 \times 20$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-303	745
$5 \times 5 \times 10$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-501	655
$5 \times 5 \times 15$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-503	765
$5 \times 5 \times 20$	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	LBO-502	940
$3 \times 3 \times 15$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149^{\circ} \mathrm{C}$	LBO-404	325
$3 \times 3 \times 20$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149{ }^{\circ} \mathrm{C}$	LBO-405	405
$3 \times 3 \times 30$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149^{\circ} \mathrm{C}$	LBO-409	710
$3 \times 3 \times 50$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149^{\circ} \mathrm{C}$	LBO-410	1300
$4 \times 4 \times 10$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149^{\circ} \mathrm{C}$	LBO-304	510
$4 \times 4 \times 15$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149^{\circ} \mathrm{C}$	LBO-305	630
$4 \times 4 \times 20$	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ $1064 \mathrm{~nm}, \mathrm{~T}=149{ }^{\circ} \mathrm{C}$	LBO-306	745
$3 \times 3 \times 10$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-406	245
$3 \times 3 \times 15$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-407	325
$4 \times 4 \times 10$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-307	510
$4 \times 4 \times 15$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-308	630
$5 \times 5 \times 10$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-507	655
$5 \times 5 \times 15$	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	LBO-508	765

Physical and Optical properties

Chemical formula	$\mathrm{LiB}_{3} \mathrm{O}_{5}$		
Crystal structure	orthorhombic, mm2		
Optical symmetry	Negative biaxial		
Space group	Pna2 ${ }_{1}$		
Density	$2.47 \mathrm{~g} / \mathrm{cm}^{3}$		
Mohs hardness	6		
Optical homogeneity	$\partial \mathrm{n}=10^{-6} \mathrm{~cm}^{-1}$		
Transparency region at " 0 " transmittance level	$155-3200 \mathrm{~nm}$		
Linear absorption coefficient at 1064 nm	$<0.01 \% \mathrm{~cm}^{-1}$		
Refractive indices:	n_{x}	n_{y}	n_{z}
at 1064 nm	1.5656	1.5905	1.6055
at 532 nm	1.5785	1.6065	1.6212
at 355 nm	1.5971	1.6275	1.6430
Sellmeier equations ($\lambda, \mu \mathrm{m}$)	$\begin{gathered} n_{x}^{2}=2.4542+0.01125 /\left(\lambda^{2}-0.01135\right)-0.01388 \lambda^{2} \\ n_{y}^{2}=2.5390+0.01277 /\left(\lambda^{2}-0.01189\right)-0.01849 \lambda^{2}+4.3025 \times 10^{-5} \lambda^{4}-2.9131 \times 10^{-5} \lambda^{6} \\ n_{z}^{2}=2.5865+0.0131 /\left(\lambda^{2}-0.01223\right)-0.01862 \lambda^{2}+4.5778 \times 10^{-5} \lambda^{4}-3.2526 \times 10^{-5} \lambda^{6} \end{gathered}$		
Phase matching range Type 1 SHG	$554-2600 \mathrm{~nm}$		
Phase matching range Type 2 SHG	790-2150 nm		
NCPM SHG temperature dependence:			
Type 1 range 950-1300 nm	$\mathrm{T} 1=-1893.3 \lambda^{4}+8886.6 \lambda^{3}-13019.8 \lambda^{2}+5401.5 \lambda+863.9$		
Type 1 range 1300-1800 nm	T2 $=878.1 \lambda^{4}-6954.5 \lambda^{3}+20734.2 \lambda^{2}-26378 \lambda+12020$		
Type 2 range 1100-1500 nm	$\mathrm{T} 3=-21630.6 \lambda^{4}+112251 \lambda^{3}-220460 \lambda^{2}+194153 \lambda-64614.5$		
NCPM SHG at 1064 nm Type 1 temperature	$149{ }^{\circ} \mathrm{C}$		
NCPM SHG at 1319 nm Type 2 temperature	$43^{\circ} \mathrm{C}$		
Walk-off angle	7 mrad (Type 1 SHG 1064 nm)		
Thermal acceptance	6.4 Kxcm (Type 1 SHG 1064 nm)		
Angular acceptance	6.5 mrad $\times \mathrm{cm}$ (Type 1 SHG 1064 nm) 248 mrad×cm (Type 1 NCPM SHG 1064 nm)		
Nonlinearity coefficients	$\mathrm{d}_{31}=(1.05 \pm 0.09) \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{32}=-(0.98 \pm 0.09) \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{33}=(0.05 \pm 0.006) \mathrm{pm} / \mathrm{V}$		
Effective nonlinearity:			
XY plane	$\mathrm{d}_{\text {ooe }}=\mathrm{d}_{32} \cos \varphi$		
YZ plane	$\mathrm{d}_{\text {oeo }}=\mathrm{d}_{\text {eoo }}=\mathrm{d}_{31} \cos \theta$		
Expansion coefficients	$\mathrm{a}_{\mathrm{x}}=10.8 \times 10^{-5} \mathrm{~K}^{-1} ; \quad \mathrm{a}_{\mathrm{y}}=-8.8 \times 10^{-5} \mathrm{~K}^{-1} ; \mathrm{a}_{\mathrm{z}}=3.4 \times 10^{-5} \mathrm{~K}^{-1}$		
Laser induced damage threshold (LIDT)	$>5 \mathrm{~J} / \mathrm{cm}^{2}$ ($>500 \mathrm{MW} / \mathrm{cm}^{2}$), $1064 \mathrm{~nm}, 10 \mathrm{~ns}, 10 \mathrm{~Hz}$		

Please contact EKSMA OPTICS for further information or nonstandard specifications.

Related Products

LBO crystals for SHG of Yb:KGW/KYW laser frequency conversion. See page 2.17
Crystal Oven TC2
See page 2.28

$149^{\circ} \mathrm{C}$ temperature is required to achieve Non-Critical Phase
Matching (NCPM) in LBO at type 1 SHG of 1064 nm application.
TC2 oven is specially designed for this purpose.
Crystal Oven
See page 2.29

Heatpoint is a compact round oven designed for heating $\left(30-80^{\circ} \mathrm{C}\right)$
of humidity sensitive nonlinear crystals. It is used to prevent moisture
condensation on crystal faces or for thermostabilization of the crystals.

BBO - BETA BARIUM BORATE

Features

- Wide transparency region
- Broad phase-matching range
- Large nonlinear coefficient
- High damage threshold
- Wide thermal acceptance bandwidth
- High optical homogenity

As a result of its excellent properties BBO has a number of advantages for different applications:

- harmonic generations (up to fifth) of Nd doped lasers
- frequency doubling and tripling of ultrashort pulse Ti:Sapphire and Dye lasers
- optical parametric oscillators (OPO) at both Type 1 (ooe) and Type 2 (eoe) phase-matching
- frequency doubling of Argon ion and Copper vapour laser radiation
- electro-optic crystal for Pockels cells
- ultrashot pulse duration measurements by autocorrelation.

Standard specifications

Flatness	$\lambda / 8$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$10-5$ scratch $\&$ dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

OPO tuning curves of BBO at 355 nm pump

We offer:

- Crystal aperture up to $25 \times 25 \mathrm{~mm}$
- Crystal length up to 25 mm
- Thin crystals down to $5 \mu \mathrm{~m}$ thickness
- AR, BBAR, P-coating
- BBO with gold electrodes for e/o applications
- Different mounting and repolishing services

Standard Crystals list

Size, mm	θ, deg	φ, deg	Coating	Application	Catalogue number	Price, EUR
$6 \times 6 \times 0.1$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-601H	505
$6 \times 6 \times 0.2$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-602H	505
$6 \times 6 \times 0.5$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-603H	440
$6 \times 6 \times 1$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-604H	390
$6 \times 6 \times 2$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-605H	360
$6 \times 6 \times 0.1$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-609H	505
$6 \times 6 \times 0.2$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-610H	505
$6 \times 6 \times 0.5$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-611H	440
$6 \times 6 \times 1$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-612H	390
$10 \times 10 \times 0.1$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-1001H	800
$10 \times 10 \times 0.2$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-1002H	790
$10 \times 10 \times 0.5$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-1003H	760
$10 \times 10 \times 1$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-1004H	765
$10 \times 10 \times 2$	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm , Type 1	BBO-1005H	830
$10 \times 10 \times 0.1$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-1009H	800
$10 \times 10 \times 0.2$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-1010H	790
$10 \times 10 \times 0.5$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm , Type 1	BBO-1011H	760
$10 \times 10 \times 1$	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	BBO-1012H	785

Wide selection of non-standard size and cut angle BBO crystals is available at www.eksmaoptics.com

Typical P-coating for BBO SHG@800 nm application

Related Products

Thin BBO crystals for SHG and THG of Ti:Sapphire laser wavelength
See page 2.23
BBO crystals for SHG of Yb:KGW/KYW laser frequency conversion
See page 2.17

Physical and Optical properties

Chemical formula	$\mathrm{BaB}_{2} \mathrm{O}_{4}$
Crystal structure	trigonal, 3m
Optical symmetry	Negative Uniaxial ($\mathrm{n}_{0}>\mathrm{n}_{\mathrm{e}}$)
Space group	R3c
Density	$3.85 \mathrm{~g} / \mathrm{cm}^{3}$
Mohs hardness	5
Optical homogeneity	$\partial \mathrm{n}=10^{-6} \mathrm{~cm}^{-1}$
Transparency region at " 0 " transmittance level	$189-3500 \mathrm{~nm}$
Linear absorption coefficient at 1064 nm	< $0.1 \% \mathrm{~cm}^{-1}$
Refractive indices	
at 1064 nm	1.6551 1.5426
at 532 nm	1.6750 1.5555
at 355 nm	1.7055 1.5775
at 266 nm	1.7571 1.6139
at 213 nm	1.8465 1.6742
Sellmeier equations ($\lambda, \mu \mathrm{m}$)	$\begin{aligned} & \mathrm{n}_{\mathrm{o}}^{2}=2.7366122+0.0185720 /\left(\lambda^{2}-0.0178746\right)-0.0143756 \lambda^{2} \\ & \mathrm{n}_{\mathrm{e}}^{2}=2.3698703+0.0128445 /\left(\lambda^{2}-0.0153064\right)-0.0029129 \lambda^{2} \end{aligned}$
Phase matching range Type 1 SHG	$410-3300 \mathrm{~nm}$
Phase matching range Type 2 SHG	530-3300 nm
Walk-off angle	55.9 mrad (Type 1 SHG 1064 nm)
Angular acceptance	$1.2 \mathrm{mrad} \times \mathrm{cm}$ (Type 1 SHG 1064 nm)
Thermal acceptance	$70 \mathrm{~K} \times \mathrm{cm}$ (Type 1 SHG 1064 nm)
Nonlinearity coefficients	$\mathrm{d}_{22}= \pm 2.2 \mathrm{pm} / \mathrm{V} ; \mathrm{d}_{15}=\mathrm{d}_{31}= \pm 0.08 \mathrm{pm} / \mathrm{V}$
Effective nonlinearity expressions	$\begin{gathered} d_{\text {ooe }}=d_{31} \sin \theta-d_{22} \cos \theta \sin 3 \varphi \\ d_{\text {eoe }}=d_{\text {oee }}=d_{22} \cos ^{2} \theta \cos 3 \varphi \end{gathered}$
Thermal expansion coefficient	$a_{11}=4 \times 10^{-6} \mathrm{~K}^{-1} ; \quad a_{33}=36 \times 10^{-6} \mathrm{~K}^{-1}$
Damage threshold for TEM_{00}	$>0.5 \mathrm{GW} / \mathrm{cm}^{2}$ at $1064 \mathrm{~nm}, 10 \mathrm{~ns}$ $\sim 50 \mathrm{GW} / \mathrm{cm}^{2}$ at $1064 \mathrm{~nm}, 1 \mathrm{ps}$ $>200 \mathrm{GW} / \mathrm{cm}^{2}$ at $800 \mathrm{~nm}, 100 \mathrm{fs}, 50 \mathrm{~Hz}$

Typical coating for BBO THG@800 nm or SHG@532 nm applications (output face P@266 nm)

Typical coating for BBO SHG@532 nm application (input face P@532nm)

P-protective coating. It's a single or two layers antireflection coating made at specified wavelength range. Typical reflection values are $R \approx 2 \%$ in the mid range, $R<4 \%$ at the edges. P coating is recommended for ultra-short pulses applications and features low dispersion.

Housing accessories

Ring Holders for Nonlinear Crystals See page 2.26

Positioning Mount 840-0199 for Nonlinear Crystal Housing Accepts crystals with aperture up to $12 \times 12 \mathrm{~mm}$ and thichness up to 3 mm .
See page 2.27

CESIUM LITHIUM BORATE - CLBO

Features

- Well suited for UV applications
- Small walk-off angle
- Large angle tolerance
- No saturation for high power generation

SHG Tuning curve of CLBO

CLBO is a highly hygroscopic NLO crystal material. Therefore, standard CLBO crystals are supplied sealed in 1 -inch ($\varnothing 25.4 \mathrm{~mm}$) housings with anti-reflection coated UV FS protective windows. Unmounted CLBO crystals are available upon custom request.

CLBO is a relatively new nonlinear crystal material, which has excellent properties in the UV that can be used for different applications:

- Harmonic generation (up to fifth) of Nd -doped lasers
- Frequency doubling and tripling of Alexandrite, Ti:Sapphire lasers

Standard Specifications

Flatness	$\lambda / 8 @ 633 \mathrm{~nm}$
Parallelism	20 arcsec
Surface quality	$10-5$ scratch \& dig (MIL-O-13830A)
Perpendicularity	$<5 \operatorname{arcmin}$
Angle tolerance	$<30 \operatorname{arcmin}$
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

Physical Properties

Chemical formula	$\mathrm{CsLiB}_{6} \mathrm{O}_{10}$
Transparency range	180-2750 nm
Effective NLO coefficient	1.01 pm/V @ 532 nm $1.16 \mathrm{pm} / \mathrm{V}$ @ 488 nm
NLO coefficients	$\begin{gathered} d_{\text {eff }}(I)=d_{36} \sin \theta m \sin (2 \varphi) \\ d_{\text {eff }}(I)=d_{36} \sin (2 \theta m) \cos (2 \varphi) \end{gathered}$
Sellmeier equations, CLBO at $20^{\circ} \mathrm{C}(0.1914<\lambda<2.09 \mu \mathrm{~m})$	$\begin{aligned} & \mathrm{no}^{2}=2.2104+0.01018 /\left(\lambda^{2}-0.01424\right)-0.01258 \lambda^{2} \\ & \mathrm{ne}^{2}=2.0588+0.00838 /\left(\lambda^{2}-0.01363\right)-0.00607 \lambda^{2} \end{aligned}$
Density	$2.461 \mathrm{~g} / \mathrm{cm}^{3}$
Mohs hardness	5.5
Melting point	1118 K
Thermal conductivity	$1.25 \mathrm{~W} / \mathrm{mK}$
Refractive indices	$\begin{gathered} \mathrm{n}_{\mathrm{e}}=1.4340, \mathrm{no}=1.4838 @ 1064 \mathrm{~nm} \\ \mathrm{n}_{\mathrm{e}}=1.4445, \mathrm{no}=1.4971 @ 532 \mathrm{~nm} \end{gathered}$
Therm-optic coefficients	$\begin{aligned} & \mathrm{dn}_{\mathrm{o}} / \mathrm{dT}=-1.9 \times 10^{-6} /{ }^{\circ} \mathrm{C} \\ & \mathrm{dn}_{\mathrm{e}} / \mathrm{dT}=-0.5 \times 10^{-6} /{ }^{\mathrm{C}} \end{aligned}$

Standard Crystals List

Size, mm	$\boldsymbol{\theta}$, deg	$\boldsymbol{\varphi}$, deg	Coating	Catalogue number	Price, EUR
$4 \times 4 \times 10$	61.5	45	AR/AR @ $532+266 \mathrm{~nm}$	CLBO-401S	2760
$5 \times 5 \times 8$	61.5	45	AR/AR @ $532+266 \mathrm{~nm}$	CLBO-501S	3410

CLBO is a highly hygroscopic NLO crystal material. Standard CLBO crystals are supplied sealed in 1-inch ($\varnothing 25.4 \mathrm{~mm}$) housings with anti-reflection coated UV FS protective windows. Unmounted CLBO crystals are available upon custom request.

Application

Wavelength	Phase matching angle	Deff	Angle tolerence	Walk-off angle
$532+532=266 \mathrm{~nm}$	61.7°	$0.84 \mathrm{pm} / \mathrm{V}$	$0.49 \mathrm{mrad}-\mathrm{cm}$	1.83°

KDP / DKDP - POTASSIUM DIDEUTERIUM PHOSPHATE

Features

- Laser frequency conversion - harmonic generation for high pulse energy, low repetition ($<100 \mathrm{~Hz}$) rate lasers
- Electro-optical modulation
- Q-switching crystal for Pockels cells

Standard specifications

Flatness	$\lambda / 6$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$20-10$ scratch $\&$ dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

Electro-Optical/Q-switching application

- EKSMA OPTICS offers highly deuterated D>96\% electro-optic crystal - DKDP for Q-switching application;
- Standard dimensions of electro-optic DKDP crystals for Q-switching are cylinders dia $9 \times 20 \mathrm{~mm}$ and dia $12 \times 24 \mathrm{~mm}$ however manufacturing of custom size and rectangular shape crystals is available;
- Gold evaporated or silver paste electrodes are available;
- Dielectric thin film AR coatings for specified laser wavelengths are available;
- Typical quarter wave voltage 3.4 kV at 1064 nm;
- Typical contrast ratio between crossed polarizers better than 1:2000;
- Damage threshold of AR coated DKDP surface $>5 \mathrm{~J} / \mathrm{cm}^{2}$ at $1064 \mathrm{~nm}, 10 \mathrm{~ns}$ pulses.

Frequency conversion applications

- DKDP crystals are used for second harmonic generation of high pulse energy low repetition rate ($<100 \mathrm{~Hz}$) Q-switched and mode-locked Nd:YAG lasers. Cut angle of crystal for operation at room temperature is 36.6° for Type 1 phase matching and 53.7° deg for Type 2 phase matching.
- DKDP crystals are used for third harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers via sum frequency generation. Cut angle of crystal for operation at room temperature is 59.3° for Type 2 phase matching.
- Type 1 DKDP crystals with non-critical cut angle $\theta=90^{\circ}$ are used for fourth harmonic generation ($532 \mathrm{~nm} \rightarrow 266 \mathrm{~nm}$) of high pulse energy Q-switched and mode-locked Nd:YAG lasers. Crystal must be heated at $\sim 50^{\circ} \mathrm{C}$ temperature to match NCPM conditions.
- Type 1 KDP crystals with close to noncritical cut angle $\theta=76.5^{\circ}$ are used for fourth harmonic generation ($532 \mathrm{~nm} \rightarrow 266$ nm) of high pulse energy Q -switched and mode-locked Nd:YAG lasers. KDP has lower absorption at UV wavelengths comparing to DKDP.
- KDP thin crystals are used for second harmonic generation of $\mathrm{T}:$:Sapphire laser radiation or pulse duration measurement in single shot autocorrelators. KDP possesses ~ 2.4 times larger spectral acceptance and correspondingly smaller group velocity mismatch comparing to BBO crystal for SHG of 800 nm , what sometime is very critical parameter for femtosecond wide spectrum pulses.
- KDP crystals can be supplied by EKSMA OPTICS of aperture up to $\varnothing 80 \mathrm{~mm}$. Actually KDP remains the only solution for harmonic generation of very high intensity femtosecond Ti:Sapphire lasers featuring sub-tera Watt or tera Watt peak power pulses in large >30 mm diameter beams.

Standard Crystals list

Size, mm	Θ, deg	φ, deg	Coating							Application	Catalogue number	Price, EUR
$15 \times 15 \times 13$	36.5	45	AR/AR @ $1064+532 \mathrm{~nm}$	SHG @ 1064 nm , Type 1	DKDP-401	890						
$15 \times 15 \times 13$	53.5	0	AR/AR @ $1064+532 \mathrm{~nm}$	SHG @ 1064 nm , Type 2	DKDP-402	890						
$12 \times 12 \times 20$	59.3	0	AR/AR @ $1064+532 / 355 \mathrm{~nm}$	THG @ 1064 nm , Type 2	DKDP-403	830						
$12 \times 12 \times 20$	53.5	0	AR/AR @ $1064 / 1064+532 \mathrm{~nm}$	SHG @ 1064 nm	DKDP-404	830						
$15 \times 15 \times 20$	53.5	0	AR/AR @ $1064 / 1064+532 \mathrm{~nm}$	SHG @ 1064 nm	DKDP-405	950						
$15 \times 15 \times 20$	59.3	0	AR/AR @ $1064+532 / 355 \mathrm{~nm}$	THG @ 1064 nm	DKDP-406	950						
$12 \times 12 \times 5$	76.5	45	AR/AR @ $532 / 266 \mathrm{~nm}$	SHG @ 532 nm	KDP-401	405						
$15 \times 15 \times 7$	76.5	45	AR/AR @ $532 / 266 \mathrm{~nm}$	SHG @ 532 nm	KDP-402	480						

> Wide selection of non-standard size and cut angle DKDP crystals is available at www.eksmaoptics.com

Physical and Optical properties

Crystals		KDP	DKDP
Chemical formula		$\mathrm{KH}_{2} \mathrm{PO}_{4}$	$\mathrm{KD}_{2} \mathrm{PO}_{4}$
Symmetry		42 m	42 m
Hygroscopicity		high	high
Density, $\mathrm{g} / \mathrm{cm}^{3}$		2.332	2.355
Thermal conductivity, W/cm \times K		$\mathrm{k}_{11}=1.9 \times 10^{-2}$	$\begin{aligned} & \mathrm{k}_{11}=1.9 \times 10^{-2} \\ & \mathrm{k}_{33}=2.1 \times 10^{-2} \end{aligned}$
Thermal expansion coefficients, K^{-1}		$\begin{aligned} & \mathrm{a}_{11}=2.5 \times 10^{-5} \\ & \mathrm{a}_{33}=4.4 \times 10^{-5} \end{aligned}$	$\begin{aligned} & \mathrm{a}_{11}=1.9 \times 10^{-5} \\ & \mathrm{a}_{33}=4.4 \times 10^{-5} \end{aligned}$
Transmission range, $\mu \mathrm{m}$		0.18-1.5	0.2-2.0
Residual absorption, cm^{-1} (at $1.06 \mu \mathrm{~m}$)		0.04	0.005
Measured refractive index (at $1.06 \mu \mathrm{~m}$)		$\begin{aligned} & \mathrm{n}_{\mathrm{o}}=1.4938 \\ & \mathrm{n}_{\mathrm{e}}=1.4599 \end{aligned}$	$\begin{aligned} & \mathrm{n}_{\mathrm{o}}=1.4931 \\ & \mathrm{n}_{\mathrm{e}}=1.4582 \end{aligned}$
Sellmeier coeff., λ - wavelength in $\mu \mathrm{m}$		$\mathrm{n}^{2}=\mathrm{A}$	$\frac{D}{\lambda^{2}-E}$
A	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 2.259276 \\ & 2.132668 \end{aligned}$	$\begin{aligned} & 2.2409 \\ & 2.1260 \end{aligned}$
B	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{gathered} 13.00522 \\ 3.2279924 \end{gathered}$	$\begin{aligned} & 2.2470 \\ & 0.7844 \end{aligned}$
C	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \end{aligned}$	$\begin{aligned} & 126.9205 \\ & 123.4032 \end{aligned}$
D	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{gathered} 0.01008956 \\ 0.008637494 \end{gathered}$	$\begin{aligned} & 0.0097 \\ & 0.0086 \end{aligned}$
E	$\begin{aligned} & \mathrm{n}_{\mathrm{o}} \\ & \mathrm{n}_{\mathrm{e}} \end{aligned}$	$\begin{aligned} & 0.012942625 \\ & 0.012281043 \end{aligned}$	$\begin{aligned} & 0.0156 \\ & 0.0120 \end{aligned}$
Nonlinear coeff. $\mathrm{d}_{36}, \mathrm{pm} / \mathrm{V}$ (at $1.06 \mu \mathrm{~m}$)		0.43	0.40
Effective nonlinear coefficient Type 1 Type 2		$\begin{aligned} & d_{\text {ooe }}=d_{36} \times \sin \theta \times \sin 2 \varphi \\ & d_{\text {eoe }}=d_{36} \times \sin \theta \times \cos 2 \varphi \end{aligned}$	
Laser damage threshold, $\mathrm{GW} / \mathrm{cm}^{2}$ at $1.06 \mu \mathrm{~m}$		$\begin{gathered} 10 \mathrm{ps}-100 \\ 1 \mathrm{~ns}-10 \\ 15 \mathrm{~ns}-14.4 \end{gathered}$	$\begin{aligned} & 250 \mathrm{ps}-6 \\ & 10 \mathrm{~ns}-0.5 \end{aligned}$

Phase matching angles and bandwidths for SHG of 1064 nm

| Crystal | Type 1 ooe | Type 2 eoe | Type 1 ooe | Type 2 eoe |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type of phase matching | 41.2 | 59.1 | 36.6 | 53.7 |
| Cut angle θ, deg | 1.1 | 2.2 | 1.2 | 2.3 |
| Acceptances for crystal of 1 cm length (FWHM): | | | | |
| $\Delta \theta$ (angular), mrad | 10 | 11.8 | 32.5 | 29.4 |
| ΔT thermal, K | 21 | 4.5 | 6.6 | 4.2 |
| $\Delta \lambda$ spectral, nm | 28 | 25 | 25 | 25 |
| Walk off, mrad | | | | |

ADP, DADP, RDP, CDA and DCDA crystals
are available upon request!

Features

- Excellent nonlinear, electro-optical and acousto-optical properties
High nonlinear coefficient
- Wide transparency range

Broad angular acceptance
Broad thermal acceptance

We offer:

- Crystal size up to $10 \times 10 \times 20 \mathrm{~mm}$
- Singleband and dualband AR and BBAR coatings
- Standard and customised mounts and housings
- Free technical consulting.

KTP is a standard crystal mostly used in extracavity configuration when a single pass through the crystal is required.
KTP crystals are optimised for SHG intracavity configuration in low peak power CW lasers. Due to the large number of passes through the crystal, low insertion losses and high homogeneity are essential for conversion efficiency. The special highest quality material selected by SHG efficiency mapping of each crystal, fine surface polishing and dual band AR coatings with very low losses allow EKSMA OPTICS to produce KTP crystals suitable for intracavity SHG application.

Fig. 1. Type 2 SHG in $x-y$ plane

Fig. 3. OPO tuning curve in $x-y$ plane

Fig. 1 represents Type 2 SHG tuning curve of KTP in $x-y$ plane. In $x-y$ plane the slope $\partial(\Delta k) / \partial \theta$ is small. This corresponds to quasiangular noncritical phase-matching, which ensures the double advantage of a large acceptance angle and a small walk off. Otherwise in $x-z$ plane the slope $\partial(\Delta k) / \partial \lambda$ is almost zero for wavelengths in the range $1.5-2.5 \mu \mathrm{~m}$ and this corresponds to quasiwavelength noncritical phase-matching, which ensures a large spectral acceptance

Standard specifications

Flatness	$\lambda / 8$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$10-5$ scratch $\&$ dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	90% of full aperture

Fig. 2. Type 2 SHG in x-z plane

Fig. 4. OPO tuning curve in $x-z$ plane
(see Fig. 2). Wavelength noncritical phasematching is highly desirable for frequency conversion of short pulses.
As a lasing material for OPG, OPA or OPO, KTP can most usefully be pumped by Nd lasers and their second harmonic or any other source with intermediate wavelength, such as a dye laser (near 600 nm). Fig. 3 and Fig. 4 show the phase-matching angles for OPO/OPA pumped at 532 nm in $x-y$ and $x-z$ plane respectively.

Standard Crystals list

| Size, mm | $\boldsymbol{\theta}$, deg | $\boldsymbol{\varphi}$, deg | Coating | Application | Catalogue number | Price, EUR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \times 3 \times 5$ | 90 | 23.5 | AR/AR @ $1064+532 \mathrm{~nm}$ | SHG @ 1064 nm | KTP-401 | 76 |
| $3 \times 3 \times 10$ | 90 | 23.5 | AR/AR @ $1064+532 \mathrm{~nm}$ | SHG @ 1064 nm | KTP-402 | 109 |
| $4 \times 4 \times 6$ | 90 | 23.5 | AR/AR @ $1064+532 \mathrm{~nm}$ | SHG @ 1064 nm | KTP-403 | 118 |
| $7 \times 7 \times 9$ | 90 | 23.5 | AR/AR @ $1064+532 \mathrm{~nm}$ | SHG @ 1064 nm | KTP-404 | 529 |

Physical properties

Crystal structure	orthorhombic
Point group	mm 2
Space group	Pna2 ${ }_{1}$
Lattice constants, $\AA \mathrm{A}$	$\mathrm{a}=6.404, \mathrm{~b}=10.616, \mathrm{c}=12.814, \mathrm{z}=8$
Density, $\mathrm{g} / \mathrm{cm}^{3}$	3.01
Melting point, ${ }^{\circ} \mathrm{C}$	1172
Transition temperature, ${ }^{\circ} \mathrm{C}$	936
Mohs hardness	5
Thermal expansion coefficients, ${ }^{\circ} \mathrm{C}^{-1}$	$\mathrm{a}_{\mathrm{x}}=11 \times 10^{-6}, \mathrm{ay}=9 \times 10^{-6}, \mathrm{a}_{\mathrm{z}}=0.6 \times 10^{-6}$
Thermal conductivity, $\mathrm{W} / \mathrm{cm}^{\circ} \mathrm{C}$	13
Not hygroscopic	

Optical properties

Transparency	$350-4400 \mathrm{~nm}$	
Refractive indices	at 1064 nm	at 532 nm
	$\mathrm{n}_{\mathrm{x}}=1.7404$	$\mathrm{n}_{\mathrm{x}}=1.7797$
	$\mathrm{n}_{\mathrm{y}}=1.7479$	$\mathrm{n}_{\mathrm{y}}=1.7897$
	$\mathrm{n}_{\mathrm{z}}=1.8296$	$\mathrm{n}_{\mathrm{z}}=1.8877$
Thermooptic coefficients in $0.4-1.0 \mu \mathrm{~m}$ range	$\partial n_{x} / \partial T=1.1 \times 10^{-5}(\mathrm{~K})^{-1}$ $\partial n_{y} / \partial \mathrm{T}=1.3 \times 10^{-5}(\mathrm{~K})^{-1}$ $\partial \mathrm{n}_{\mathrm{z}} / \partial \mathrm{T}=1.6 \times 10^{-5}(\mathrm{~K})^{-1}$	
Wavelength dispersion of refractive indices	$\begin{aligned} \mathrm{n}_{\mathrm{x}}{ }^{2} & =3.0067+0.03 \\ \mathrm{n}_{\mathrm{y}}^{2} & =3.0319+0.04 \\ \mathrm{n}_{\mathrm{z}}^{2} & =3.3134+0.056 \end{aligned}$	$\begin{aligned} & \text { 1) }-0.01247 \times \lambda^{2} \\ & \text { 6) }-0.01337 \times \lambda^{2} \\ & \text { 1) }-0.016713 \times \lambda^{2} \end{aligned}$

Nonlinear properties

Phase matching range for:	
Type 2 SHG in x-y plane	$0.99 \div 1.08 \mu \mathrm{~m}$
Type 2 SHG in x-z plane	$1.1 \div 3.4 \mu \mathrm{~m}$
For Type 2, SHG @ 1064 nm , cut angle $\theta=90^{\circ}, \varphi=23.5^{\circ}$	
Walk-off	4 mrad
Angular acceptances	$\Delta \theta=55 \mathrm{mrad} \times \mathrm{cm}$ $\Delta \varphi=10 \mathrm{mrad} \times \mathrm{cm}$
Thermal acceptance	$\Delta \mathrm{T}=22 \mathrm{~K} \times \mathrm{cm}$
Spectral acceptance	$\Delta v=0.56 \mathrm{~nm} \times \mathrm{cm}$
Up to 80\% extracavity SHG efficiency	
Effective nonlinearity	
x-y plane	$\mathrm{d}_{\text {eoe }}=\mathrm{d}_{\text {oee }}=\mathrm{d}_{15} \sin ^{2} \varphi+\mathrm{d}_{24} \cos ^{2} \varphi$
x-z plane	$\begin{gathered} \mathrm{d}_{\text {oeo }}=\mathrm{d}_{\text {eoo }}=\mathrm{d}_{24} \sin \theta \\ \mathrm{~d}_{31}= \pm 1.95 \mathrm{pm} / \mathrm{V} \quad \mathrm{~d}_{32}= \pm 3.9 \mathrm{pm} / \mathrm{V} \\ \mathrm{~d}_{33}= \pm 15.3 \mathrm{pm} / \mathrm{V} \quad \mathrm{~d}_{24}=\mathrm{d}_{32} \quad \mathrm{~d}_{15}=\mathrm{d}_{31} \end{gathered}$
Damage threshold	$\begin{aligned} & >500 \mathrm{MW} / \mathrm{cm}^{2} \\ \text { for pulses } \lambda & =1064 \mathrm{~nm}, \tau=10 \mathrm{~ns}, 10 \mathrm{~Hz}, \mathrm{TEM}_{00} \end{aligned}$

Related Products

Features

- Significantly reduced absorption in band range of $2.0-5.0 \mu \mathrm{~m}$
- Broad angular bandwidth
- Broad temperature bandwidth
- Low dielectric constants

Potassium titanyle arsenate ($\mathrm{KTiOAsO}_{4}$), or KTA, is a nonlinear optical crystal for Optical Parametric Oscillation (OPO) application. It has good nonlinear optical and electrooptical properties, e.g. significantly reduced absorption in band range of 2.0-5.0 $\mu \mathrm{m}$, broad angular and temperature bandwidth, low dielectric constants.

Primary applications

- OPO for mid IR generation - up to $4 \mu \mathrm{~m}$
- Sum and Difference Frequency Generation in mid IR range
- Electro-optical modulation and Q-switching

Specifications

Flatness	$\lambda / 8$ at 633 nm
Parallelism	$<20 \mathrm{arcsec}$
Surface quality	$10-5$ scratch \& dig (MIL-PRF-13830B)
Perpendicularity	$<15 \mathrm{arcmin}$
Angle tolerance	$< \pm 0.2^{\circ}$
Aperture tolerance	$\pm 0.1 \mathrm{~mm}$
Clear aperture	$>90 \%$ central area
Transmitting wavefront distortion	less than $\lambda / 8 @ 633 \mathrm{~nm}$

We offer:

- KTA crystals size up to $15 \times 15 \times 30 \mathrm{~mm}$
- AR and BBAR coatings for VIS-IR and mid IR ranges

Standard Crystals list

Size, mm	θ, deg	φ, deg	Coating	Application	Catalogue number	Price, EUR
$5 \times 5 \times 20$	45	0	AR/AR @ 1064+(1500-4500) nm	Nanosecond OPO @ 1064 nm	KTA-503	1985
$5 \times 5 \times 10$	45	0	AR/AR @ 1064+(1500-4500) nm	Picosecond OPG/A @ 1064 nm	KTA-504	1060
$6 \times 6 \times 1$	47	0	AR/AR @ 1.2-2.4/2.6-5.0 $\mu \mathrm{m}$	DFG @ 1.2-2.4 $\mu \mathrm{m}$	KTA-601H	675
$6 \times 6 \times 3$	46	0	AR/AR @ 1030+(1700-5000) nm	OPO @ 1030 nm	KTA-602H	590

Physical properties

Crystal structure	orthorhombic
Point group	mm 2
Space group	Pna21
Lattice constants, \AA	$\mathrm{a}=13.125, \mathrm{~b}=6.5716, \mathrm{c}=10.786$
Density, $\mathrm{g} / \mathrm{cm}^{3}$	3.45
Melting point, ${ }^{\circ} \mathrm{C}$	1130
Mohs hardness	5
Thermal conductivity, $\mathrm{W} / \mathrm{m} \times \mathrm{K}$	$\mathrm{k}_{1}=1.8, \mathrm{k}_{2}=1.9, \mathrm{k}_{3}=2.1$
Not hygroscopic	

Nonlinear \& Optical properties

Transparency	$350-5300 \mathrm{~nm}$
Wavelength dispersion of refractive indices	$\begin{aligned} & \mathrm{n}_{\mathrm{x}}{ }^{2}=1.90713+1.23522 \times \lambda^{2} /\left(\lambda^{2}-0.196922^{2}\right)-0.01025 \times \lambda^{2} \\ & \mathrm{n}_{\mathrm{y}}{ }^{2}=2.15912+1.00099 \times \lambda^{2} /\left(\lambda^{2}-0.218442^{2}\right)-0.01096 \times \lambda^{2} \\ & \left.\mathrm{n}_{\mathrm{z}}{ }^{2}=2.14768+1.29559 \times \lambda^{2} /\left(\lambda^{2}-0.227192^{2}\right)-0.01436 \times \lambda^{2}\right) \end{aligned}$
Electro optical constants	$\mathrm{r}_{33}=37.5 \mathrm{pm} / \mathrm{V}, \mathrm{r}_{23}=15.4 \mathrm{pm} / \mathrm{V}, \mathrm{r}_{13}=11.5 \mathrm{pm} / \mathrm{V}$
Effective nonlinearity	
x-y plane	$\mathrm{d}_{\text {eoe }}=\mathrm{d}_{\text {oee }}=\mathrm{d}_{15} \sin ^{2} \varphi+\mathrm{d}_{24} \cos ^{2} \varphi$
x-z plane	$\begin{gathered} \mathrm{d}_{\text {oео }}=\mathrm{d}_{\text {eoo }}=\mathrm{d}_{24} \sin \theta \\ \mathrm{~d}_{31}=2.3 \mathrm{pm} / \mathrm{V}, \mathrm{~d}_{32}=3.66 \mathrm{pm} / \mathrm{V}, \mathrm{~d}_{33}=15.5 \mathrm{pm} / \mathrm{V} \\ \mathrm{~d}_{24}=3.64 \mathrm{pm} / \mathrm{V}, \mathrm{~d}_{15}=2.3 \mathrm{pm} / \mathrm{V} \end{gathered}$
Damage threshold	$>500 \mathrm{MW} / \mathrm{cm}^{2}$ for pulses $\lambda=1064 \mathrm{~nm}, \mathrm{t}=10 \mathrm{~ns}, 10 \mathrm{~Hz}, \mathrm{TEM}_{00}$

LiNbO $_{3}$ - LITHIUM NIOBATE

Lithium Niobate (LiNbO_{3}) nonlinear optical crystals are well suited for a wide range of applications:

Electro-optical modulation
Q-switching

- Laser frequency conversion of wavelengths $>1 \mu \mathrm{~m}$

Specifications

Flatness	$\lambda / 8$ at 633 nm
Parallelism	<20 arcsec
Surface quality	$10-5$ scratch $\&$ dig (MIL-PRF-13830B)
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Clear aperture	90% of full aperture

Standard Crystals list

Size, mm	Orientation	Coating	Catalogue number	Price, EUR
$6 \times 6 \times 25$	z-cut	AR/AR @ 1064 nm	LNO-602	550
$9 \times x 9 \times 25$	z-cut	AR/AR @ 1064 nm	LNO-901	620

Physical and Optical properties

Chemical formula	LiNbO_{3}
Crystal structure	trigonal
Space group	R3C
Density	$4.64 \mathrm{~g} / \mathrm{cm}^{3}$
Mohs hardness	5
Optical homogenity	$\sim 5 \times 10^{-5} / \mathrm{cm}$
Transparency range	$420-5200 \mathrm{~nm}$
Absorption coefficient	~ 0.1\% / cm @ 1064 nm
Refractive indices at 1064 nm	$\begin{aligned} & n_{\mathrm{e}}=2.146, n_{\mathrm{o}}=2.220 @ 1300 \mathrm{~nm} \\ & n_{\mathrm{e}}=2.156, n_{\mathrm{o}}=2.232 @ 1064 \mathrm{~nm} \\ & n_{\mathrm{e}}=2.203, n_{\mathrm{o}}=2.286 @ 632.8 \mathrm{~nm} \end{aligned}$
Sellmeier equations ($\lambda, \mu \mathrm{m}$)	$\begin{gathered} \mathrm{n}_{0}^{2}=4.9048+0.11768 /\left(\lambda^{2}-0.04750\right)-0.027169 \lambda^{2} \\ n_{e}^{2}=4.5820+0.099169 /\left(\lambda^{2}-0.04443\right)-0.021950 \lambda^{2} \end{gathered}$
Thermal expansion coefficient @ $25^{\circ} \mathrm{C}$	$\begin{aligned} & / / \mathrm{a}, 2.0 \times 10^{-6} / \mathrm{K} \\ & / / \mathrm{c}, 16.7 \times 10^{-6} / \mathrm{K} \end{aligned}$
Thermal conductivity	$\sim 5 \mathrm{~W} / \mathrm{m} / \mathrm{K} @ 25^{\circ} \mathrm{C}$
Thermal optical coefficient	$\mathrm{dn} \mathrm{o}_{\mathrm{o}} / \mathrm{dT}=-0.874 \times 10^{-6} / \mathrm{K}$ at $1.4 \mu \mathrm{~m}$ $\mathrm{dn} \mathrm{e} / \mathrm{dT}=39.073 \times 10^{-6} / \mathrm{K}$ at $1.4 \mu \mathrm{~m}$

LiIO_{3} - LITHIUM IODATE

Features

- High nonlinear optical coefficients
- Wide transparency range
- Low damage threshold - not recommended for high power applications

Applications

- Harmonic generators
- Thin LilO_{3} for autocorrelation measurements

Housing accessories

Ring Holders for Nonlinear Crystals See page 2.26

Positioning Mount 840-0199 for Nonlinear Crystal Housing
See page 2.27

LilO_{3} Second harmonic generation phasematching

Specifications

Flatness	$\lambda / 6$ at 633 nm
Parallelism	<30 arcsec
Surface quality	$20-10$ scratch $\& \operatorname{dig}$ (MIL-PRF-13830B)
Perpendicularity	$<5 \operatorname{arcmin}$
Angle tolerance $(\Delta \theta \& \Delta \varphi)$	<30 arcmin
Clear aperture	90% of full aperture

Physical and Optical properties

Crystal structure	hexagonal
Point group	6
Density, $\mathrm{g} / \mathrm{cm}^{3}$	4.487
Mohs hardness	3.5-4.0
Transparency range, nm	280-4000
Absorption at $1064 \mathrm{~nm}, \mathrm{~cm}^{-1}$	< 0.05
Refractive indices at 1064 nm	$\mathrm{n}_{\mathrm{o}}=1.8571, \mathrm{n}_{\mathrm{e}}=1.7165$
at 800 nm	$\mathrm{n}_{\mathrm{o}}=1.8676, \mathrm{n}_{\mathrm{e}}=1.7245$
at 532 nm	$\mathrm{n}_{\mathrm{o}}=1.8982, \mathrm{n}_{\mathrm{e}}=1.7480$
Phase matching range for Type 1 SHG, nm	570-4000
Acceptances for Type 1 SHG at 1064 nm	
Angular, mrad $\times \mathrm{cm}$	0.77
Spectral, $\mathrm{cm}^{-1} \times \mathrm{cm}$	12.74
Walk-off for Type 1 SHG at 1064 nm , mrad	74.30
Nonlinear optical coefficient $\mathrm{d}_{31}, \mathrm{pm} / \mathrm{V}$	4.4 (at 1064 nm)
Effective nonlinearity	$\mathrm{d}_{\text {ooe }}=\mathrm{d}_{15} \sin \theta$
Damage threshold, MW/cm ${ }^{2}$	>100 for TEM $_{00}, 1064 \mathrm{~nm}, 10 \mathrm{~ns}, 10 \mathrm{~Hz}$
Wavelength dispersion of refractive indices (λ - in $\mu \mathrm{m}$)	$\begin{aligned} & \mathrm{n}_{\mathrm{e}}^{2}=1.673463+\frac{1.245229 \lambda^{2}}{\lambda^{2}-0.028224}-0.003641 \lambda^{2} \\ & \mathrm{n}_{\mathrm{o}}^{2}=2.083648+\frac{1.332068 \lambda^{2}}{\lambda^{2}-0.035306}-0.008525 \lambda^{2} \end{aligned}$

$Z_{n G e P_{2}} / \mathrm{AgGaSe}_{2} / \mathrm{AgGaS}_{\mathbf{2}} / \mathrm{GaSe}$ - INFRARED NONLINEAR CRYSTALS

$\mathrm{ZnGeP}{ }_{2}$

ZnGeP_{2} (ZGP) crystal has transmission band edges at 0.74 and $12 \mu \mathrm{~m}$. However it's useful transmission range is from 1.9 to $8.6 \mu \mathrm{~m}$ and from 9.6 to $10.2 \mu \mathrm{~m}$. ZGP crystal has the largest nonlinear optical coefficient and relatively high laser damage threshold. The crystal is successfully used in diverse applications:

- up-conversion of CO_{2} and CO laser radiation to near IR range via harmonics generation and mixing processes;
- efficient SHG of pulsed $\mathrm{CO}, \mathrm{CO}_{2}$ and chemical DF-laser;

Absorption spectra of ZnGeP 2 crystal near $2 \mu \mathrm{~m}$

- efficient down conversion of Holmium, Thulium and Erbium and laser wavelengths to mid infrared wavelength ranges by OPO process.

Crystals with high damage threshold BBAR coatings and the lowest absorption coefficient $a<0.05 \mathrm{~cm}^{-1}$ at pump wavelengths 2.05
$2.1 \mu \mathrm{~m}$ „o"- polarisation are available for OPO applications.

Typical absorption coefficient is $<0.03 \mathrm{~cm}^{-1}$ at $2.5-8.2 \mu \mathrm{~m}$ range.

Transmission spectra of 15 mm long AR coated ZnGeP 2 crystal for OPO @ $2.1 \mu \mathrm{~m}$

Type 1 OPO and SHG tuning curves in ZnGeP_{2}

Type 1 ZnGeP 2 crystalS for OPO at $3.5-5 \mu \mathrm{~m}$ range pumped at $\sim 2.1 \mu \mathrm{~m}$

Size, mm	θ, deg	φ, deg	Coating	Application	Catalogue number
$7 \times 5 \times 15$	54	0	AR @ $2.1 \mu \mathrm{~m}+$ BBAR @ 3.5-5 $\mu \mathrm{m}$	OPO@2.1 $\rightarrow 3.5-5 \mu \mathrm{~m}$	ZGP-401
$7 \times 5 \times 20$	54	0	AR @ $2.1 \mu \mathrm{~m}+$ BBAR @ 3.5-5 $\mu \mathrm{m}$	OPO@2.1 $\rightarrow 3.5-5 \mu \mathrm{~m}$	ZGP-402
$7 \times 5 \times 25$	54	0	AR @ $2.1 \mu \mathrm{~m}+$ BBAR @ $3.5-5 \mu \mathrm{~m}$	OPO@2.1 $\rightarrow 3.5-5 \mu \mathrm{~m}$	ZGP-403

AgGaSe_{2}

AgGaSe_{2} has band edges at 0.73 and $18 \mu \mathrm{~m}$. Its useful transmission range of 0.9-16 $\mu \mathrm{m}$ and wide phase matching capability provide excellent potential for OPO applications when pumped by a variety of currently available lasers. Tuning from $2.5-12 \mu \mathrm{~m}$ has been
obtained when pumping by Ho:YLF laser at $2.05 \mu \mathrm{~m}$; as well as NCPM operation from 1.9-5.5 $\mu \mathrm{m}$ when pumping at 1.4-1.55 $\mu \mathrm{m}$. Efficient SHG of pulsed CO_{2} laser has been demonstrated.

Type 1 OPO and SHG tuning curves in AgGaSe_{2}

Transmission spectra of 18 mm long uncoated AgGaSe ${ }_{2}$ crystal

Transmission spectra of 25 mm long AR coated AgGaSe_{2} crystal
AgGaS_{2} is transparent from 0.53 to $12 \mu \mathrm{~m}$. Although nonlinear optical coefficient is the lowest among the above mentioned infrared crystals, its high short wavelength transparency edging at 550 nm is used in OPOs pumped by Nd:YAG laser; in numerous difference frequency mixing experiments using diode, Ti:Sapphire, Nd:YAG and IR dye lasers covering 3-12 $\mu \mathrm{m}$ range; direct infrared countermeasure systems, and SHG of CO_{2} laser.

Transmission spectra of 14 mm long AR coated and uncoated AgGaS_{2} crystal used for OPO pumped by Nd:YAG laser

List of Standard AgGaS_{2} Crystals

| Size, mm | θ, deg | φ, deg | Coating | Application | Catalogue number | Price, EUR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 \times 5 \times 1$ | 39 | 45 | BBAR/BBAR @ 1.1-2.6 / 2.6-11 $\mu \mathrm{m}$ | DFG @ 1.2-2.4 $\mu \mathrm{m}->2.4-11 \mu \mathrm{~m}$ | AGS-401H | 1770 |
| $6 \times 6 \times 2$ | 50 | 0 | BBAR/BBAR @ 1.1-2.6/2.6-11 $\mu \mathrm{m}$ | DFG @ 1.2-2.4 $\mu \mathrm{m}->2.4-11 \mu \mathrm{~m}$ | AGS-402H | 2375 |
| $5 \times 5 \times 0.4$ | 34 | 45 | BBAR/BBAR @ 3-6/1.5-3 $\mu \mathrm{m}$ | SHG @ 3-6 $\mu \mathrm{m}$, Type 1 | AGS-403H | 2040 |
| $5 \times 5 \times 0.4$ | 39 | 45 | BBAR/BBAR @ 1.1-2.6/2.6-11 $\mu \mathrm{m}$ | DFG @ 1.2-2.4 $\mu \mathrm{m}->2.4-11 \mu \mathrm{~m}$ | AGS-404H | 2040 |
| $8 \times 8 \times 0.4$ | 39 | 45 | BBAR/BBAR @ 1.1-2.6/2.6-11 $\mu \mathrm{m}$ | DFG @ 1.2-2.4 $\mu \mathrm{m}$, Type 1 | AGS-801H | 4080 |
| $8 \times 8 \times 1$ | 39 | 45 | BBAR/BBAR @ 1.1-2.6/2.6-11 $\mu \mathrm{m}$ | DFG @ 1.2-2.4 $\mu \mathrm{m}$, Type 1 | AGS-802H | 3670 |

Crystals are mounted into open ring holders (see page 2.26).

GaSe

GaSe has band edges at 0.65 and $18 \mu \mathrm{~m}$. GaSe has been successfully used for efficient SHG of CO_{2} laser, for SHG of pulsed $\mathrm{CO}, \mathrm{CO}_{2}$ and chemical DF-laser ($\lambda=2.36 \mu \mathrm{~m}$) radiation; up conversion of CO and CO_{2} laser radiation into the visible range; infrared pulses generation via difference frequency mixing of Neodymium

Transmission spectra of 17 mm long uncoated GaSe crystal
and infrared dye laser or (F-)-centre laser pulses; OPG light generation within 3.5-18 $\mu \mathrm{m}$; efficient TeraHertz generation in 100-1600 $\mu \mathrm{m}$ range. It is impossible to cut crystals for certain phase matching angles because of material structure (cleave along (001) plane) limiting areas of applications.

Type 1 and Type 2 SHG tuning curves in GaSe
GaSe, Z-Cut

Clear aperture, mm	Thickness, $\mu \mathrm{m}$	Holder, mm	Catalogue number	Price, EUR
$\varnothing 7$	10	$\varnothing 25.4$	GaSe-10H1	1950
$\varnothing 7$	30	$\varnothing 25.4$	GaSe-30H1	1625
$\varnothing 7$	100	$\varnothing 25.4$	GaSe-100H1	1475
$\varnothing 7$	500	$\varnothing 25.4$	GaSe-500H1	1460
$\varnothing 7$	1000	$\varnothing 25.4$	GaSe-1000H1	1635
$\varnothing 7$	2000	$\varnothing 25.4$	GaSe-2000H1	1810

[^0]Crystals could be mounted into $\varnothing 40 \mathrm{~mm}$ holders under your request.

Optical nonlinear crystals $\mathrm{ZnGeP}_{2}, \mathrm{AgGaSe}_{2}, \mathrm{AgGaS}_{2}$ ， GaSe^{2} have gained tremendous interest for middle and deep infrared applications due to their unique features．The crystals have large effective optical nonlinearity，wide spectral and angular acceptances，broad
transparency range，non－critical requirements for temperature stabilization and vibration control，are well mechanically processed （except GaSe）．

Physical Properties

Crystal		ZnGeP		AgGaSe	AgGaS
Grystal Symmetry		Tetragonal	Tetragonal	Tetragonal	Hexagonal
Point Group		42 m	42 m	42 m	
Lattice Constants，\AA	a	5.465	5.9901	5.757	
	c	10.771	10.8823	10.305	

Optical Properties

Crystal	ZnGeP ${ }_{2}$	AgGaSe_{2}	AgGaS_{2}	GaSe
Optical transmission，$\mu \mathrm{m}$	0．74－12	0．73－18	0．53－12	0．65－18
Indices of Refraction at				
$\begin{array}{ll}1.06 \mu \mathrm{~m} & \mathrm{n}_{\mathrm{o}} \\ \mathrm{n}_{\mathrm{e}}\end{array}$	$\begin{aligned} & 3.2324 \\ & 3.2786 \end{aligned}$	$\begin{aligned} & 2.7005 \\ & 2.6759 \end{aligned}$	$\begin{aligned} & 2.4508 \\ & 2.3966 \end{aligned}$	$\begin{aligned} & 2.9082 \\ & 2.5676 \end{aligned}$
$5.3 \mu \mathrm{~m}$ n_{o} n 。	$\begin{aligned} & 3.1141 \\ & 3.1524 \end{aligned}$	$\begin{aligned} & 2.6140 \\ & 2.5823 \end{aligned}$	$\begin{aligned} & 2.3954 \\ & 2.3421 \end{aligned}$	$\begin{aligned} & 2.8340 \\ & 2.4599 \end{aligned}$
$\begin{array}{ll} 10.6 \mu \mathrm{~m} & \begin{array}{c} \mathrm{n}_{0} \\ \mathrm{n}_{\mathrm{e}} \end{array} \end{array}$	$\begin{aligned} & 3.0725 \\ & 3.1119 \end{aligned}$	$\begin{aligned} & 2.5915 \\ & 2.5585 \end{aligned}$	$\begin{aligned} & 2.3466 \\ & 2.2924 \end{aligned}$	$\begin{aligned} & 2.8158 \\ & 2.4392 \end{aligned}$
Absorption Coefficient， cm^{-1} at				
$1.06 \mu \mathrm{~m}$	3.0	＜0．02	＜0．09	0.25
$2.5 \mu \mathrm{~m}$	0.03	＜0．01	0.01	0.05
$5.0 \mu \mathrm{~m}$	0.02	＜0．01	0.01	0.05
$7.5 \mu \mathrm{~m}$	0.02	－	0.02	0.05
$10.0 \mu \mathrm{~m}$	0.4	－	＜0．6	0.05
$11.0 \mu \mathrm{~m}$	0.8	－	0.6	0.05

Nonlinear Optical Properties

Crystal	ZnGeP ${ }_{2}$	AgGaSe_{2}	AgGaS_{2}	GaSe
Laser damage threshold，MW／cm ${ }^{2}$	60	25	10	28
at pulse duration，ns	100	50	20	150
at wavelength，$\mu \mathrm{m}$	2.05	10.6	1.06	9.3
Nonlinearity，pm／V	111	43	31	63
Phase matching angle for Type 1 SHG at $10.6 \mu \mathrm{~m}$ ，deg	76	55	67	14
Walk－off angle at $5.3 \mu \mathrm{~m}$ ，deg	0.57	0.67	0.85	3.4

Thermal Properties

Crystal		ZnGeP 2	AgGaSe 2	AgGaS_{2}	GaSe
Melting point，${ }^{\circ} \mathrm{C}$		1298	851	998	1233
Thermal Expansion Coefficient， $10^{-6} /{ }^{\circ} \mathrm{K}$	\perp	$17.5^{\text {（a）}}$	$23.4{ }^{\text {c }}$（	12.5	9.0
	\perp	$9.1{ }^{\text {（b）}}$	$18.0{ }^{\text {（d）}}$		
	11	$1.59{ }^{\text {（a）}}$	$-6.4{ }^{\text {（c）}}$	－13．2	8.25
	11	$8.08{ }^{\text {（b）}}$	$-16.0^{(d)}$		

a）at 293－573 K，b）at $573-873 \mathrm{~K}, \mathrm{c}$ ）at $298-423 \mathrm{~K}$, d）at $423-873 \mathrm{~K}$

Sellmeier equations for calculation of indices of refraction

Crystal		A	B	C	D	E	F	Expression
$\mathrm{ZnGeP}{ }_{2}$	n 。	8.0409	1.68625	0.40824	1.2880	611.05	－	$\mathrm{n}^{2}=\mathrm{A}+\mathrm{B} \lambda^{2} /\left(\lambda^{2}-\mathrm{C}\right)+\mathrm{D} \lambda^{2} /\left(\lambda^{2}-\mathrm{E}\right)$
	n_{e}	8.0929	1.8649	0.41468	0.84052	452.05	－	
AgGaSe_{2}	n 。	6.8507	0.4297	0.15840	0.00125	－	－	$\mathrm{n}^{2}=\mathrm{A}+\mathrm{B} /\left(\lambda^{2}-\mathrm{C}\right)-\mathrm{D} \lambda^{2}$
	n_{e}	6.6792	0.4598	0.21220	0.00126	－	－	
AgGaS_{2}	n 。	3.3970	2.3982	0.09311	2.1640	950.0	－	$n^{2}=A+B /\left(1-C / \lambda^{2}\right)+D /\left(1-E / \lambda^{2}\right)$
	n_{e}	3.5873	1.9533	0.11066	2.3391	1030.7	－	
GaSe	n 。	7.443	0.405	0.0186	0.0061	3.1485	2194	$\mathrm{n}^{2}=\mathrm{A}+\mathrm{B} / \lambda^{2}+\mathrm{C} / \lambda^{4}+\mathrm{D} / \lambda^{6}+\mathrm{E} /\left(1-\mathrm{F} / \lambda^{2}\right)$
	n_{e}	5.76	0.3879	－0．2288	0.1223	1.855	1780	

BBO / LBO / KDP / $\mathrm{LilO}_{3} / \mathrm{AgGaS}_{2}$ / GaSe - ULTRATHIN NONLINEAR CRYSTALS

Table 1. D parameter for Type 1
SHG @ 800 nm orientation crystals for 800 nm (o-pol) and 400 nm (e-pol) pulses

Crystal	D at 800 nm	D at 400 nm
BBO	$75 \mathrm{fsec}^{2} / \mathrm{mm}$	$196 \mathrm{fsec}^{2} / \mathrm{mm}$
LBO	$47 \mathrm{fsec}^{2} / \mathrm{mm}$	$128 \mathrm{fsec}^{2} / \mathrm{mm}$
KDP	$27 \mathrm{fsec}^{2} / \mathrm{mm}$	$107 \mathrm{fsec}^{2} / \mathrm{mm}$
LilO_{3}	$196 \mathrm{fsec}^{2} / \mathrm{mm}$	$589 \mathrm{fsec}^{2} / \mathrm{mm}$

We may calculate that spectrum limited initial 30 fsec Gaussian pulse at 400 nm will be broadened to 35 fsec pulse after passing 1 mm thickness BBO crystal.

Thin crystals are used in different applications with femtosecond pulses:

- Harmonic generation (SHG, SFG)
- Optical parametric generation and amplification (OPG, OPA)
- Difference frequency generation (DFG)
- Pulse width measurements by auto and cross correlation
- THz frequency generation (in GaSe crystal)

The propagation of a ultrashort optical pulses through the crystal results in a delay of the pulses because of Group Velocities Mismatch (GVM), a duration broadening because of Group Delay Dispersion (GDD) and a frequency chirp. Unfortunately those effects forces to limit nonlinear crystal thickness in frequency generation schemes.
For two collinearly propagating pulses with different group velocities their quasistatic interaction length ($\mathrm{L}_{q 5}$) is defined as distance over which they separate by a path equal to the one of the pulses duration (or to the desired pulse duration):

$$
\mathrm{L}_{\mathrm{qs}}=\tau / \mathrm{GVM} ;
$$

where GVM is the group velocity mismatch and τ is the duration of the pulse. GVM calculations are presented for the most popular Type 1 phase matching applications for different crystals in Table 2. Optimal BBO, LBO, KDP and LilO ${ }_{3}$ crystal thicknesses which are limited by GVM for Type 1 SHG of 800 nm at different fundamental pulse duration are presented in the Table 3. Also effective coefficients and phase matching angles at room temperature $\left(20^{\circ} \mathrm{C}\right)$ are calculated. If longer crystal will be used this will cause second harmonic pulse broadening to the duration longer than fundamental pulse duration (or desired pulse duration).

Group delay dispersion (GDD) has an important impact on the propagation of pulses, because a pulse always has certain spectral width, so that dispersion will cause its frequency components to propagate with different velocities. In case of crystals where we have normal dispersion when refractive index decreases with increasing wavelength this leads to a lower group velocity of higherfrequency components, and thus to a positive chirp.
The frequency dependence of the group velocity also has an influence on the pulse duration. If the pulse is initially unchirped, dispersion in a crystal will always increase its duration. This is called dispersive pulse broadening. For an originally unchirped Gaussian pulse with the duration τ_{0}, the pulse duration is increased according to:

$$
t=\tau_{0} \sqrt{1+\left(\frac{4 \ln 2 \cdot D \cdot L}{\tau_{0}{ }^{2}}\right)^{2}}
$$

L - thickness of the crystal in mm. D - second order group delay dispersion or dispersion parameter. Table 1 gives D parameter for Type 1 phase matching SHG @ 800 nm for 800 nm pulse with „O" polarization and 400 nm pulse with „e" polarization in different crystals.

Table 2. Group velocity mismatch between shortest and longest wave pulse for Type 1 phase matching

Crystal	SFM	SFM	SHG	SHG	SHG	DFG	$\begin{gathered} \text { DFG } \\ 1.48-1.74 \rightarrow 10 \mu \mathrm{~m} \end{gathered}$
	$800+266 \mathrm{~nm}$	$800+400 \mathrm{~nm}$	800 nm	1030 nm	1064 nm	1.26-2.18 $\rightarrow 3 \mu \mathrm{~m}$	
BBO	2074 fs/mm	$737 \mathrm{fs} / \mathrm{mm}$	$194 \mathrm{fs} / \mathrm{mm}$	$94 \mathrm{fs} / \mathrm{mm}$	$85 \mathrm{fs} / \mathrm{mm}$	-	-
LBO	-	$448 \mathrm{fs} / \mathrm{mm}$	$123 \mathrm{fs} / \mathrm{mm}$	$51 \mathrm{fs} / \mathrm{mm}$	$44 \mathrm{fs} / \mathrm{mm}$	-	-
KDP	-	$370 \mathrm{fs} / \mathrm{mm}$	$77 \mathrm{fs} / \mathrm{mm}$	$1 \mathrm{fs} / \mathrm{mm}$	-7 fs/mm	-	-
LilO3	-	-	559 fs/mm	$285 \mathrm{fs} / \mathrm{mm}$	$262 \mathrm{fs} / \mathrm{mm}$	-	-
AgGaS_{2}	-	-	-	-	-	$170 \mathrm{fs} / \mathrm{mm}$	-10 fs $/ \mathrm{mm}$

Table 3. Quasistatic interaction length for Type 1 SHG of 800 nm

Crystal	200 fs	100 fs	50 fs	20 fs	10 fs	Cut angles θ, φ	
BBO	1.0 mm	0.5 mm	0.26 mm	0.1 mm	0.05 mm	$29.2^{\circ}, 90^{\circ}$	Coefficient deff
LBO	1.6 mm	0.8 mm	0.4 mm	0.16 mm	0.08 mm	$90^{\circ}, 31.7^{\circ}$	$0.75 \mathrm{pm} / \mathrm{V}$
KDP	2.6 mm	1.3 mm	0.6 mm	0.26 mm	0.13 mm	$44.9^{\circ}, 45^{\circ}$	
LilO_{3}	0.4 mm	0.18 mm	0.01 mm	0.04 mm	0.018 mm	$42.5^{\circ}, 0^{\circ}$	$0.30 \mathrm{pm} / \mathrm{V}$

FREE STANDING CRYSTALS

OPTICALLY CONTACTED CRYSTALS

The crystals of thickness down to $100 \mu \mathrm{~m}$ can be supplied as free standing crystals not attached to the support. However the ring mounts are highly recommended for safe handling of these thin crystals. The tolerance
is $\pm 50 \mu \mathrm{~m}$ for crystals of thickness down to $300 \mu \mathrm{~m}$ and $\pm 20 \mu \mathrm{~m}$ for crystals of thickness down to $100 \mu \mathrm{~m}$.
GaSe crystal is supplied glued in to dia $\varnothing 40 \mathrm{~mm}$ ring holder only.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness
BBO	$2 \times 2 \mathrm{~mm}$	$25 \times 25 \mathrm{~mm}$	0.1 mm
LBO	$2 \times 2 \mathrm{~mm}$	$60 \times 60 \mathrm{~mm}$	0.1 mm
KDP	$2 \times 2 \mathrm{~mm}$	$\varnothing 75 \mathrm{~mm}$	0.1 mm
LilO $_{3}$	$2 \times 2 \mathrm{~mm}$	$50 \times 50 \mathrm{~mm}$	$0.1 \mathrm{~mm}^{*}$
AgGaS_{2}	$5 \times 5 \mathrm{~mm}$	$20 \times 20 \mathrm{~mm}$	0.1 mm
GaSe	$\varnothing 5 \mathrm{~mm}$	$\varnothing 19 \mathrm{~mm}$	0.01 mm

* the thickness should be about 0.5 mm for max aperture KDP and LilO_{3}

BBO crystals of thickness less than $100 \mu \mathrm{~m}$ can be supplied optically contacted on UV Fused Silica substrates sizes $10 \times 10 \times 2 \mathrm{~mm}$ or
$12 \times 12 \times 2 \mathrm{~mm}$. Other sizes of substrates are also available on request. The tolerances of BBO crystal thickness is $+10 /-5 \mu \mathrm{~m}$.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness
BBO	$5 \times 5 \mathrm{~mm}$	$18 \times 18 \mathrm{~mm}$	$10 \pm 5 \mu \mathrm{~m}$

EKSMA OPTICS provides various AR, BBAR and protective coatings for all free standing crystals and optically contacted crystals. Ring mounts made from anodized aluminium and teflon are available for safe and convenient handling of ultrathin crystals.

Standard specifications of crystals

Crystals	BBO, LBO	KDP, $\mathrm{LiO}_{3}, \mathrm{AgGaS}_{2}$	GaSe
Flatness	$\lambda / 6$ at 633 nm	$\lambda / 4$ at 633 nm	cleaved perpendicularly to optical axis. Polish is not available
Parallelism	< 10 arcsec	< 30 arcsec	
Angle tolerance	$<15 \mathrm{arcmin}$	$<30 \mathrm{arcmin}$	
Surface quality	10-5 scratch/dig	20-10 scratch/dig	

Related Products

Other Ultrahin BBO crystals available. See pages 2.17; 2.23

Positioning Mount 840-0199 for Nonlinear Crystal Housing
See page 2.27

Nd:YAG - NEODYMIUM DOPED YTTRIUM ALUMINIUM GARNET

Nd:YAG crystal is the most popular lasing media for solid-state lasers. EKSMA OPTICS offers standard specifications high optical quality Nd:YAG rods with high damage threshold AR @ 1064 nm coatings.

Related Products

Visualizator 990-0840
See page 1.17

Properties of $1.0 \% \mathrm{Nd}:$ YAG at $25^{\circ} \mathrm{C}$

Formula	$\mathrm{Y}_{2.97} \mathrm{Nd}_{0.03} \mathrm{Al}_{5} \mathrm{O}_{12}$
Crystal structure	Cubic
Density	$4.55 \mathrm{~g} / \mathrm{cm}^{3}$
Melting point	$1970^{\circ} \mathrm{C}$
Mohs hardness	8.5
Transition	${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow 4 \mathrm{I}_{11 / 2} @ 1064 \mathrm{~nm}$
Fluorescence lifetime	$230 \mu \mathrm{~s}$ for 1064 nm
Thermal conductivity	$0.14 \mathrm{Wcm}^{-1} \mathrm{~K}^{-1}$
Specific heat	$0.59 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$
Thermal expansion	$6.9 \times 10^{-6} \mathrm{C}^{-1}$
Zn/Zt	$7.3 \times 10^{-6} \mathrm{C}^{-1}$
Young's modulus	$3.17 \times 10^{4} \mathrm{Kg}^{\prime} / \mathrm{mm}^{-2}$
Poisson ratio	0.25
Thermal shock resistance	$790 \mathrm{Wm}^{-1}$
Refractive index	$1.818 @ 1064 \mathrm{~nm}$

Standard Rods Sizes

Diameter, mm	Length, mm	Doping, $\%$	Wedge of the ends, deg	Catalogue number	Price, EUR
3	53	0.9	$0 / 0$	E-Y-3-0.9-A/A	215
3	65	0.8	$0 / 0$	E-Y-3-0.8-A/A	265
3	65	1.1	$0 / 0$	E-Y-3-1.1-A/A	325
4	65	0.8	$3 / 3$ parallel	E-Y-4-0.8-A/A	530
4	65	1.1	$3 / 3$ parallel	E-Y-4-1.1-A/A	530
6.35	85^{*}	1.1	$3 / 3$ parallel	E-Y-6.35-1.1-A/A	890
8	85^{*}	1.1	$3 / 3$ parallel	E-Y-8-1.1-A/A	1340
10	85^{*}	1.1	$3 / 3$ parallel	E-Y-10-1.1-A/A	2200
12	100^{*}	0.8	$3 / 3$ parallel	E-Y-12-0.8-A/A	4740
12	100^{*}	1.1	$3 / 3$ parallel	E-Y-12-1.1-A/A	4740

* rods with barrel grooving, except 10 mm at both ends of the rod without grooving.

Specifications of Standard Nd:YAG Laser Rods

Nd Doping Level	0.8% or 1.1%
Orientation	$<111>$ crystalline direction
Surface Quality	$10-5$ scratch $\&$ dig (MIL-PRF-13830B)
Surface Flatness	$\lambda / 10$ at 633 nm
Parallelism	<10 arcsec
Perpendicularity	<5 arcmin for plano/plano ends
Diameter Tolerance	$+0 /-0.05 \mathrm{~mm}$
Length Tolerance	$+1 /-0.5 \mathrm{~mm}$
Clear Aperture	$>90 \%$ of full aperture
Chamfers	0.1 mm at 45 deg
Coating	both sides coated AR @ $1064 \mathrm{~nm}, \mathrm{R}<0.2 \%$, AOI $=0$ deg
Barrel grooving	all dia $6.35,8,10,12 \mathrm{~mm}$ rods with barrel grooving

Yb:KGW / Yb:KYW - Yb-DOPED POTASSIUM GADOLINIUM TUNGSTATE

Features

- High absorption coefficient @ 981 nm
- High stimulated emission cross section
- Low laser threshold
- Extremely low quantum defect $\lambda_{\text {pump }} / \lambda_{\text {se }}$

Broad polarized output at 1023-1060 nm

- High slope efficiency with diode pumping (~60\%)

High Yb doping concentration

Applications

- Yb:KGW and Yb:KYW thin (100-150 $\mu \mathrm{m}$) crystals are used as lasing materials to generate ultrashort (hundreds of fsec) high power (>22 W) pulses. Standard pumping @ 981 nm, output: 1023-1060 nm
- Yb:KGW and Yb:KYW can be used as ultrashort pulses amplifiers

Yb:KGW and Yb:KYW are some of the best materials for high power thin disk lasers

Yb-Doped Potassium Gadolinium Tungstate ($\left.\mathbf{Y b} \mathbf{: K G d}\left(\mathbf{W O}_{4}\right)_{2}\right)$ and Yb -doped Potassium Itrium Tungstate ($\left.\mathbf{Y b}: \mathbf{K Y}\left(\mathbf{W O}_{\mathbf{4}}\right)_{\mathbf{2}}\right)$ single crystals are the laser crystals for diode or laser pumped solid-state laser applications.

Custom manufacturing capabilities

- Various shapes (slabs, rods, cubes)
- Different dopant levels
- Diversified coatings

Properties of Yb:KGW and Yb:KYW

Name	Yb:KGW	Yb:KYW	
Yb^{3+} concentration	0.5-5\%	0.5-100\%	
Crystal structure	monoclinic	monoclinic	
Point group	C2/c	C2/c	
Lattice parameters	$\begin{gathered} a=8.095 \AA, b=10.43 \AA, \\ c=7.588 \AA, \beta=94.43^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{a}=8.05 \AA, \mathrm{~b}=10.35 \AA, \\ \mathrm{c}=7.54 \AA, \beta=94^{\circ} \end{gathered}$	
Thermal expansion	$\begin{gathered} a_{a}=4 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \\ a_{b}=3.6 \times 10^{-6} /{ }^{\circ} \mathrm{C}, a_{c}=8.5 \times 10 \end{gathered}$	-	
Thermal conductivity	$\begin{gathered} \mathrm{K}_{\mathrm{a}}=2.6 \mathrm{~W} / \mathrm{mK}, \mathrm{~K}_{\mathrm{b}}=3.8 \mathrm{~W} / \mathrm{mK}, \\ \mathrm{~K}_{\mathrm{c}}=3.4 \mathrm{~W} / \mathrm{mK} \end{gathered}$	-	
Density	$7.27 \mathrm{~g} / \mathrm{cm}^{3}$	$6.61 \mathrm{~g} / \mathrm{cm}^{3}$	
Mohs' hardness	4-5	4-5	
Melting temperature	$1075{ }^{\circ} \mathrm{C}$	-	
Transmission range	0.35-5.5 $\mu \mathrm{m}$	0.35-5.5 $\mu \mathrm{m}$	
Refractive indices ($\lambda=1.06 \mu \mathrm{~m}$)	$\mathrm{n}_{\mathrm{g}}=2.037, \mathrm{n}_{\mathrm{p}}=1.986, \mathrm{n}_{\mathrm{m}}=2.033$	-	
Thermo-optic coefficients @ 1064 nm	$\partial n_{p} / \partial \mathrm{T}=-15.7 \times 10^{-6} \mathrm{~K}^{-1}$ $\partial \mathrm{n}_{\mathrm{m}} / \partial \mathrm{T}=-11.8 \times 10^{-6} \mathrm{~K}^{-1}$ $\partial n_{g} / \partial \mathrm{T}=-17.3 \times 10^{-6} \mathrm{~K}^{-1}$	For 20\% Yb:KYW $\partial n_{p} / \partial \mathrm{T}=-13.08 \times 10^{-6} \mathrm{~K}^{-1}$ $\partial \mathrm{n}_{\mathrm{m}} / \partial \mathrm{T}=-7.61 \times 10^{-6} \mathrm{~K}^{-1}$ $\partial \mathrm{n}_{\mathrm{g}} / \partial \mathrm{T}=-11.83 \times 10^{-6} \mathrm{~K}^{-1}$	
Laser wavelength	$1023-1060 \mathrm{~nm}$	$1025-1058 \mathrm{~nm}$	
Fluorescence lifetime	0.3 ms	0.3 ms	
Stimulated emission cross section (E\\|a)	$2.6 \times 10^{-20} \mathrm{~cm}^{2}$	$3 \times 10^{-20} \mathrm{~cm}^{2}$	
Absorption peak and bandwidth	$a_{a}=26 \mathrm{~cm}^{-1}, \lambda=981 \mathrm{~nm}, \Delta \lambda=3.7 \mathrm{~nm}$	$a_{a}=40 \mathrm{~cm}^{-1}, \lambda=981 \mathrm{~nm}, \Delta \lambda=3.5 \mathrm{~nm}$	
Absorption cross section	$1.2 \times 10^{-19} \mathrm{~cm}^{2}$	$1.33 \times 10^{-19} \mathrm{~cm}^{2}$	
Lasing threshold	35 mW	70 mW	
Stark levels energy (in cm^{-1}) of the ${ }^{2} \mathrm{~F}_{5 / 2}$ manifolds of $\mathrm{Yb}^{3+} @ 77 \mathrm{~K}$	10682, 10471, 10188	10695, 10476, 10187	
Stark levels energy (in cm^{-1}) of the ${ }^{2} \mathrm{~F}_{7 / 2}$ manifolds of $\mathrm{Yb}^{3+} @ 77 \mathrm{~K}$	535, 385, 163, 0	568, 407, 169, 0	

Nd:KGW crystals are low lasing threshold, highly efficient laser material exceptionally suitable for laser rangefinding applications. The efficiency of Nd:KGW lasers is 3-5 times higher than the one of Nd:YAG lasers. Nd:KGW laser medium is one of the best choices ensuring effective laser generation at low pump energies ($0.5-1 \mathrm{~J}$). These crystals supplied by EKSMA OPTICS feature high optical quality and great value of bulk resistans for laser radiation.

Standard specifications

Orientation	$[010] \pm 30 \mathrm{~min}$
Dopant concentration	$2-10$ at $\%$
Diameter tolerance	$+0.0 /-0.1 \mathrm{~mm}$
Length tolerance	$+1.0 /-0.0 \mathrm{~mm}$
Chamfer	$45(\pm 10) \mathrm{deg} \times 0.2(\pm 0.1)$ mm
Flatness	$\lambda / 10 @ 633 \mathrm{~nm}$
Parallelism	better than 30 arcsec
Perpendicularity	better than 15 arcmin $10-5$ scratch \& dig (MIL-PRF- 13830 B$)$
Surface Quality	$<0.005 \mathrm{~cm}^{-1}$
Absorption losses	

Physical and Laser properties

Chemical formula	$\mathrm{KGd}\left(\mathrm{WO}_{4}\right)$: Nd
Lattice constants	$\begin{gathered} \mathrm{a}=8.095 \AA, \mathrm{~b}=10 \AA, \\ \mathrm{c}=7.588 \AA \end{gathered}$
Optical orientation	$\mathrm{n}_{\mathrm{g}}=\mathrm{b}, \mathrm{n}_{\mathrm{p}} \mathrm{c}=20 \mathrm{deg}$
Angle between optical axis	86.5 angular grad
Density	$7.27 \mathrm{~g} / \mathrm{cm}^{3}$
Mohs hardness	5
Thermal conductivity	2.8 W/(m×grad) [100] 2.2 W/(m×grad) [010] $3.5 \mathrm{~W} /(\mathrm{m} \times \mathrm{grad})$ [001]
Thermal expansion	$\begin{gathered} 4 \times 10^{-6} \mathrm{grad}^{-1}[100] \\ 3.6 \times 10^{-6} \mathrm{grad}^{-1}[010] \\ 8.5 \times 10^{-6} \mathrm{grad}^{-1}[001] \end{gathered}$
Phase transition	$1005{ }^{\circ} \mathrm{C}$
Melting point	$1075{ }^{\circ} \mathrm{C}$
Transmission range	0.35-5.5 $\mu \mathrm{m}$
Refractive index	$\begin{aligned} & \mathrm{n}_{\mathrm{g}}=2.033 @ 1.067 \mu \mathrm{~m} \\ & \mathrm{n}_{\mathrm{p}}=1.937 @ 1.067 \mu \mathrm{~m} \\ & \mathrm{n}_{\mathrm{m}}=1.986 @ 1.067 \mu \mathrm{~m} \end{aligned}$
Transition	${ }^{4} \mathrm{~F}_{3 / 2} \rightarrow{ }^{4} \mathrm{I}_{11 / 2}$
Laser wavelength	$1.0672 \mu \mathrm{~m}$
Fluorescence lifetime	$120 \mu \mathrm{~s}$
Fluorescent width	$24 \mathrm{~cm}^{-1}$
Emission cross-section	$4.3 \times 10^{-19} \mathrm{~cm}^{-2}$
Emission temperature drift	$8.5 \times 10^{-4} \mathrm{~nm}^{\text {, }} \mathrm{K}^{-1}$

Ti:Sapphire - TITANIUM DOPED SAPPHIRE

$\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Ti}^{3+}$ - titanium-doped sapphire crystals combine outstanding physical and optical properties with broadest lasing range. $\mathrm{Al}_{2} \mathrm{O}_{3}: \mathrm{Ti}^{3+}$ indefinitely long stability and useful lifetime added to the lasing over entire band of 660-1050 nm challenge "dirty" dyes in variety of applications. Medical laser systems, lidars, laser spectroscopy, direct femtosecond pulse generation by Kerr-type mode-locking there are few of existing and potential applications.

The absorption band of Ti:Sapphire centered at 490 nm makes it suitable for variety of laser pump sources - argon ion, frequency doubled Nd:YAG and YLF, copper vapour lasers. Because of 3.2μ s fluorescence lifetime Ti:Sapphire crystals can be effectively pumped by short pulse flashlamps in powerful laser systems.

$\mathrm{TH}_{2} \mathrm{O}_{3}$ $w t$	a, cm^{-1} @ 490 nm	a, cm^{-1} @ 514 nm	a, cm^{-1} @ 532 nm
0.03	0.7^{*}	0.6	0.5
0.05	1.1	0.9	0.8
0.07	1.5	1.3	1.2
0.10	2.2	1.9	1.7
0.12	2.6	2.2	2.0
0.15	3.3	2.8	2.5
0.20	4.3	3.7	3.4
0.25	5.4	4.6	4.1

* Presented values are given with $\pm 0.05 \mathrm{~cm}^{-1}$ accuracy.

Standard specifications

Orientation	optical axis C normal to rod axis
$\mathrm{Ti}_{2} \mathrm{O}_{3}$ concentration	$0.03-0.25 \mathrm{wt} \%$
Figure Of Merit	$>150(>300$ available on special requests $)$
Size	up to 15 mm dia and up to 30 mm length
End configurations	flat/flat or Brewster/Brewster ends
Flatness	$\lambda / 10 @ 633 \mathrm{~nm}$
Parallelism	10 arcsec
Surface Quality	$10-5$ scratch $\&$ dig (MIL-PRF-13830B)
Wavefront distortion	$\lambda / 4$ inch

Physical and Laser properties

Chemical formula	$\mathrm{Ti}^{3+}: \mathrm{Al}_{2} \mathrm{O}_{3}$
Crystal structure	Hexagonal
Lattice constants	$\mathrm{a}=4.748, \mathrm{c}=12.957$
Density	$3.98 \mathrm{~g} / \mathrm{cm}^{3}$
Mohs hardness	9
Thermal conductivity	$\left.0.11 \mathrm{cal} /{ }^{\circ} \mathrm{C} \times \mathrm{sec} \times \mathrm{cm}\right)$
Specific heat	$0.10 \mathrm{cal} / \mathrm{g}$
Melting point	$2050^{\circ} \mathrm{C}$
Laser action	$4-\mathrm{Level}$ Vibronic
Fluorescence lifetime	$3.2 \mu \mathrm{sec}(\mathrm{T}=300 \mathrm{~K})$
Tuning range	$660-1050 \mathrm{~nm}$
Absorbtion range	$400-600 \mathrm{~nm}$
Emission peak	795 nm
Absorption peak	488 nm
Refractive index	$1.76 @ 800 \mathrm{~nm}$

GaSe / ZnTe - SEMICONDUCTOR TERAHERTZ CRYSTALS

ZnTe

ZnTe (Zinc Telluride) crystals with <110> orientation are used for THz generation by optical rectification process. Optical rectification is a difference frequency generation in media with large second order susceptibility. For femtosecond laser pulses which have large bandwidth the frequency components interact with each other and their difference produce bandwidth from 0 to several THz.
Detection of the THz pulse occurs via freespace electro-optic detection in another <110> oriented ZnTe crystal. The THz

GaSe

GaSe (Gallium Selenide) crystals used for THz generation shows a large bandwidth of up to 41 THz . GaSe is a negative uniaxial layered semiconductor with a hexagonal structure of 62 m point group and a direct bandgap of 2.2 eV at 300 K . GaSe crystal features high damage threshold, large nonlinear optical coefficient ($54 \mathrm{pm} / \mathrm{V}$), suitable transparent

GaSe crystal mounted in $\varnothing 25.4 \mathrm{~mm}$ holder
pulse and the visible pulse are propagated collinearly through the ZnTe crystal. The THz pulse induces a birefringence in ZnTe crystal which is read out by a linearly polarized visible pulse. When both the visible pulse and the THz pulse are in the crystal at the same time, the visible polarization will be rotated by the THz pulse. Using a $\lambda / 4$ waveplate and a beamsplitting polarizer together with a set of balanced photodiodes, it is possible to map THz pulse amplitude by monitoring the visible pulse polarization rotation after the ZnTe crystal at a variety of delay times with respect

ZnTe, <110> Cut

Size, mm	Thickness, mm	Holder, mm	Catalogue number	Price, EUR
10×10	0.1	$\varnothing 25.4$	ZnTe-100H	2145
10×10	0.2	$\varnothing 25.4$	ZnTe-200H	1880
10×10	0.5	$\varnothing 25.4$	ZnTe-500H	1420
10×10	1.0	$\varnothing 25.4$	ZnTe-1000H	1570
10×10	2.0	$\varnothing 25.4$	ZnTe-2000H	1790
10×10	3.0	$\varnothing 25.4$	ZnTe-3000H	2510

range, and low absorption coefficient, which make it an alternative solution for broadband mid infrared electromagnetic waves generation. Due to broadband THz generation and detection using a sub-20 fs laser source, GaSe emitter-detector system performance is considered to achieve comparable or even better results than using thin ZnTe crystals.

In order to achieve frequency selective THz wave generation and detection system, GaSe crystals of appropriate thickness should be used.
NOTE: because of material structure it is possible to cleave GaSe crystal along (001) plane only. Another disadvantage is softness and fragility of GaSe.

GaSe, Z-Cut

Clear aperture, mm	Thickness, $\mu \mathrm{m}$	Holder, mm	Catalogue number	Price, EUR
$\varnothing 7$	10	$\varnothing 25.4$	GaSe-10H1	1950
$\varnothing 7$	30	$\varnothing 25.4$	GaSe-30H1	1625
$\varnothing 7$	100	$\varnothing 25.4$	GaSe-100H1	1475
$\varnothing 7$	500	$\varnothing 25.4$	GaSe-500H1	1460
$\varnothing 7$	1000	$\varnothing 25.4$	GaSe-1000H1	1635
$\varnothing 7$	2000	$\varnothing 25.4$	GaSe-2000H1	1810

Please note that from now all standard GaSe crystals are provided mounted into $\emptyset 25.4 \mathrm{~mm}$ ring holders.
Crystals could be mounted into $\varnothing 40 \mathrm{~mm}$ holders under your request.

EKSMA OPTICS offers crystalline materials Barium Nitrate - $\mathbf{B a}\left(\mathrm{NO}_{3}\right)_{2}$ and undoped potassium gadolinium tungstate $\mathbf{K G d}\left(\mathbf{W O}_{4}\right)_{2}$ or KGW which have attracted much interest for stimulated Raman scattering (SRS). These materials can be used for frequency conversion in lasers for extending the tuning range. SRS in crystals is compatible with current all-solid-state technology and provides a very simple, compact means of frequency conversion.
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ has a highest Raman gain coefficient. The gain coefficient affects the threshold for Raman laser. However, the thermal lensing is particularly strong in this material. This is indicated by the large value $\partial \mathrm{n} / \partial \mathrm{T}$ and low thermal conductivity. Thermal effects are significantly smaller in KGW. This along with the high damage threshold make the crystal an excellent candidate for power scaling. Comparing $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and KGW for Raman application $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is more optimal in case of ns and longer pulses, KGW - in case of shorter pulses.
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ Physical and Optical properties

Crystal symmetry	cubic, $\mathrm{P} 2_{1} 3$
Transmission range	$0.35-1.8 \mu \mathrm{~m}$
Density	$3.25 \mathrm{~g} / \mathrm{cm}^{3}$
Hardness Mohs	$2.5-3$
Refractive indices @ 1064 nm	$\mathrm{n}=1.555$
Raman shift	$1048 \mathrm{~cm}^{-1}$
Raman gain, pump 1064 nm	$11 \mathrm{~cm} / \mathrm{GW}$
Thermal conductivity, W/mK	1.17
Zn/ZT	$-20 \times 10^{-6} \mathrm{~K}^{-1}$
Optical Damage Threshold	$\sim 0.4 \mathrm{GW} / \mathrm{cm}^{2}$

KGW Physical and Optical properties

Crystal symmetry	monoclinic, C2/c
Transmission range	$0.35-5.5 \mu \mathrm{~m}$
Density	$7.27 \mathrm{~g} / \mathrm{cm}^{3}$
Hardness Mohs	$4-5$
Refractive indices @ 1064 nm	$\mathrm{n}_{\mathrm{g}}=2.061 ; \mathrm{n}_{\mathrm{m}}=2.010 ; \mathrm{n}_{\mathrm{p}}=1.982$
Raman shift	$901 \mathrm{~cm}^{-1}(\mathrm{p}[\mathrm{mm}] \mathrm{p})$ $768 \mathrm{~cm}^{-1}(\mathrm{p}[\mathrm{gg}] \mathrm{p})$
Raman gain, pump 1064 nm	$3.3 \mathrm{~cm} / \mathrm{GW}\left(901 \mathrm{~cm}^{-1}\right)$ $4.4 \mathrm{~cm} / \mathrm{GW}\left(768 \mathrm{~cm}^{-1}\right)$
Thermal conductivity, W/mK	$\mathrm{K}_{\mathrm{a}}=2.6 ; \mathrm{K}_{\mathrm{b}}=3.8 ; \mathrm{K}_{\mathrm{c}}=3.4$
Zn/ZT	$0.4 \times 10^{-6} \mathrm{~K}^{-1}$
Optical Damage Threshold	$>10 \mathrm{GW} / \mathrm{cm}^{2}$

Raman wavelengths

in KGW (oscillation coefficient $901.5 \mathrm{~cm}^{-1}$) and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ (oscillation coefficient $1048.6 \mathrm{~cm}^{-1}$) crystals

Stokes	KGW pumped @ 532 nm	KGW pumped @ 1064 nm	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \text { pumped }$ $\text { @ } 532 \text { nm }$	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ pumped @ 1064 nm	Typical efficiency, \%
1 Stoke	558	1177	563	1197	35-70
2 Stoke	588	1316	598	1369	20-40
3 Stoke	621	1494	638	1599	10-15
4 Stoke	658	1726	684	1924	<10
1 Antistoke	507	970	503	957	10-30

Standard specifications

	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	KGW
Surface quality, scratch \& dig (MIL-PRF-13830B)	$40-20$	$10-5$
Flatness @ 633 nm	$\lambda / 4$	$\lambda / 8$
Maximal element dimensions, mm	$10 \times 10 \times 100$	$10 \times 10 \times 80$

Standard KGW Crystals. Updoped, b-cut

Dimensions,mm	Coating	Catalogue
number		

Cr^{4+} :YAG crystals

Fe:ZnSe, Cr:ZnSe, Co:ZnS
solid-state saturable absorbers also are available upon request

Co:Spinel $\left(\mathrm{Co}^{2+}: \mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$ is a relatively new material for passive Q-switching in lasers emitting from 1.2 to $1.6 \mu \mathrm{~m}$, in particular, for eye-safe $1.54 \mu \mathrm{~m}$ Er:glass laser, but also works at $1.44 \mu \mathrm{~m}$ and $1.34 \mu \mathrm{~m}$ wavelengths. High absorption cross section ($3.5 \times 10^{-19} \mathrm{~cm}^{2}$) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excitedstate absorption results in high contrast of

Fig. 1. Absorption spectra of the Co:Spinel crystal

Specifications

	Co:Spinel	Cr^{4+} :YAG
Working wavelength range, $\mu \mathrm{m}$	$1.2-1.6$	$0.8-1.2$
Ground state absorption cross section, cm^{2}	$3.5 \times 10^{-19}($ at $1.54 \mu \mathrm{~m})$	$5 \times 10^{-18}(\mathrm{at} 1.06 \mu \mathrm{~m})$
Excited state absorption cross-section, cm^{2}	-	$7 \times 10^{-19}(\mathrm{at} 1.06 \mu \mathrm{~m})$
Initial transmittance, $\%$	$30-99$	$20-99$
Transmission tolerances	$\pm 2 \%$	$\pm 2 \%$
Wavefront distortion	$<\lambda / 10 @ 632.8 \mathrm{~nm}$	$<\lambda / 8 @ 632.8 \mathrm{~nm}$
Diameter tolerances	$+0.0 /-0.2 \mathrm{~mm}$	$+0.0 /-0.2 \mathrm{~mm}$
Parallelism error	$<20 \mathrm{arcsec}$	$\leq 30 \mathrm{arcsec}$
Perpendicularity	$<5 \mathrm{arcmin}$	$\leq 15 \mathrm{arcsec}$
Surface quality	$10-5 \mathrm{scratch} \&$ dig	$20-10 \mathrm{scratch} \&$ dig
(per MIL-O-13830A)	$<0.1 \mathrm{~mm} @ 45^{\circ}$	$<0.1 \mathrm{~mm} @ 45^{\circ}$
Chamfer	$<0.2 \% @ 1540 \mathrm{~nm}$	$<0.2 \% @ 1064 \mathrm{~nm}$
AR Coating reflectivity		

Q-switch, i.e. the ratio of initial (small signal) to saturated absorption is higher than 10 (Fig. 1). Cr^{4+} :YAG is one of the best passive Q-switch for high power lasers emitting at $\sim 1 \mu \mathrm{~m}$ wavelength. Standard diameter apertures -5, $8,9.5 \mathrm{~mm}$ and various initial transmission (or optical density) are available upon request. Also Cr^{4+} :YAG laser rods for ultra-short pulse solid-state lasers are available.

Fig. 2. Transmission of AR coated at 1064 nm Cr:YAG Q-switch with initial transmission of 80% at 1064 nm

Standard Co:Spinel Crystals

Initial			
Transmission, \%	Diameter, mm	Catalogue number	Price, EUR
30	5	CoMALO-05-30	725
40	5	CoMALO-05-40	725
50	5	CoMALO-05-50	725
60	5	CoMALO-05-60	725
70	5	CoMALO-05-70	725
80	5	CoMALO-05-80	725
90	5	CoMALO-05-90	725

Standard Cr ${ }^{4+}$:YAG Crystals

Initial	Diameter, mm	Catalogue number	Price, EUR
Transmission, \%	(CrYAG-07-20	130
20	7	CrYAG-07-30	130
30	7	CrYAG-07-35	130
35	7	CrYAG-07-40	130
40	7	CrYAG-07-45	130
45	7	CrYAG-07-50	130
50	7	CrYAG-07-65	130
65	7	CrYAG-07-70	130
70	7	CrYAG-07-80	130
80	7	CrYAG-07-85	130
85			

RING HOLDERS FOR NONLINEAR CRYSTALS - 830-0001

830-0001-10

830-0001-06

Features

- Black anodized aluminium body
- Teflon or white anodized aluminium adapter for particular crystal size
- Easy assembling and disassembling

Please indicate the exact crystal size when ordering

Ring mounts made from black anodized aluminum and Teflon or white anodized aluminium adapter are available for safe and convenient handling of nonlinear crystals. The crystals are glued into white anodized aluminium adapter (830-0001-06). No glue is used for fixation of the crystal into open ring holder with teflon adapter. The standard sizes are $\varnothing 25.4$ or $\varnothing 30$ mm and thickness - 6, 10.5, 13.5 or 17.5 mm depending on crystal size.

Diameter, mm	Thickness, mm	Max. acceptable crystal size, mm	Catalogue number	Price, EUR
25.4	6	$12 \times 12 \times 0.5$	$830-0001-06$	50
25.4	10.5	$12 \times 12 \times 3$	$830-0001-10$	50
25.4	13.5	$12 \times 12 \times 6$	$830-0001-13$	50
25.4	17.5	$12 \times 12 \times 15$	$830-0001-17$	90
30	10.5	$15 \times 15 \times 3$	$830-0002-10$	50
30	13.5	$15 \times 15 \times 6$	$830-0002-13$	50
30	17.5	$15 \times 15 \times 15$	$830-0002-17$	90

Housing accessories

Positioning Mount 840-0199 for Nonlinear Crystal Housing
See page 2.27

KINEMATIC POSITIONING MOUNT - 840-0193

Features

- For Ø25.4 mm (1 inch) ring holders
- Kinematic design
- Tilt/tip range $\pm 2^{\circ}$
- Sensitivity 3 arcsec
- Both tilt and tip controlled from aside the optical path
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws

POSITIONING MOUNT FOR NONLINEAR CRYSTAL HOUSING - 840-0199

840-0199 Positioning Mount with 830-0001 Ring Holder

Features

- Accepts Ø25.4 mm and up to 10.5 mm thickness ring housings
- Kinematic design
- Wedge and ball drive mechanism
- Tilt/tip range: $\pm 2^{\circ}$
- Sensitivity: 3 arcsec
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws
- Rotation range: 360°
- Scale gradation: 2°
- Compact and robust design
- Material: black anodized aluminum

This kinematic mount accepts crystal housings of $\emptyset 25.4 \mathrm{~mm}$ and thickness up to 10.5 mm .
Large knobs on the adjusting screws relieve the strain on operator fingers during adjustment. Both screws protrude from the top allowing convenient adjustment outside the laser beam path and providing easy access for adjustments in densely packed optical set-ups.
An extra M4 tapped hole on the side of the base allows you to operate the mount as a side-drive adjustment control mount. The mount is made of black anodized aluminium to help minimize reflections.
A retaining ring $M 27 \times 1$, two Teflon rings and a tightening key to fix the crystal ring housing is included.

TEMPERATURE CONTROLLER TC2 WITH OVEN CO1 - TC2 / C01

TC2 and CO1 is high temperature set (up to $200^{\circ} \mathrm{C}$) consisting of thermocontroller TC2 and crystal oven CO1. TC2 has two independent outputs and can control two CO1-30 ovens simultaneously. Controller is equipped by LAN and USB computer control interfaces.
The nonlinear crystal is mounted into adapter before insertion into oven CO1. Such design facilitates handling and replacement of the crystal. The nonlinear crystal can be sealed with fused silica windows in order to provide extra protection. The standard adapters are 30 and 50 mm length with apertures of $3 \times 3,4 \times 4,5 \times 5,6 \times 6 \mathrm{~mm}$ and up to $12 \times 12 \mathrm{~mm}$ size. Oven is delivered with one, customer's specific size of adapter. Adapters for different sizes can be ordered separately.

Specifications

Model	TC2 + CO1-30	TC2 + CO1-50
Quantity of ovens possible to connect to one controller TC2	2	
Temperature tuning range	RT $-200^{\circ} \mathrm{C}$	
Maximum crystals dimensions	$12 \times 12 \times 30 \mathrm{~mm}$	$12 \times 12 \times 50 \mathrm{~mm}$
Sealing (optional)	FS windows (operation wavelength must be specified before ordering)	
Temperature tuning step	$0.05{ }^{\circ} \mathrm{C}$	
Accuracy	$\pm 0.5^{\circ} \mathrm{C}$	
Long-term stability	$\pm 0.05^{\circ} \mathrm{C}$	
Control interfaces	LAN, USB	
Mains	$90-264 \mathrm{~V}, 47-66 \mathrm{~Hz}$	
Power consumption	< 50 W	
Dimensions, DiaxD	$\emptyset 52 \times 52 \mathrm{~mm}$	$\emptyset 52 \times 72 \mathrm{~mm}$
Price, EUR	2130	2275

Specifications are subject to changes without advance notice.

Related products

Adapter MS-4 for CO1 mounting on tilt stage

In addition, if the crystal is used for harmonics generation, the phase-matching angle depends on crystal temperature. For example, the output power of second harmonics generator based on KD*P crystal can decrease by 50% if the crystal temperature changes just by one degree, hence for good laser stability precise crystal temperature stabilization is necessary.

Many of widely used nonlinear crystals are susceptible to ambient humidity, for example KD*P, BBO, LBO. Protective coatings applied to the surface can reduce degradation to some extent only. To improve the protection of surfaces of the crystals from the degradation it is desirable to keep the crystals at higher than ambient temperature, which helps avoid condensation on the crystal surfaces.

COMPACT OVEN FOR NONLINEAR CRYSTALS - Heatpoint

Heatpoint is a compact round oven designed for heating and thermostabilization of humidity sensitive nonlinear crystals. Temperature of the oven can be adjusted in $25-70^{\circ} \mathrm{C}$ range using a small thermocontroller attached on a wire. Heatpoint ovens exhibit precise long-term stability and are ideal for keeping nonlinear crystals at their optimal operational temperature, preventing moisture condensation on crystal's faces.
Because of their compact design, Heatpoint ovens can be easily installed into tight spaces. These ovens can be mounted in any standard one-inch optics positioning mount.
Heatpoints are available in two sizes: HP15 accepts crystals up to 15 mm in length, while slightly longer HP30 fits crystals up to 30 mm in length. The exact aperture of the crystal must be specified when ordering, as a special adapter is made for the installation.
Each oven is made exactly for specific crystal aperture size, so it cannot be used for different size crystals.

Specifications

Model	HP15	HP30
Crystal length (max)	15 mm	30 mm
Crystal aperture (max)	$6 \times 6 \mathrm{~mm}$	
Temperature tuning range	$25-70^{\circ} \mathrm{C}$	
Temperature tuning step	$0.1{ }^{\circ} \mathrm{C}$	
Long-term stability	$\pm 0.1^{\circ} \mathrm{C}$	
Temperature ramp rate	$3^{\circ} \mathrm{C} / \mathrm{min}$	
Powering requirements	12 V DC	
Power consumption (PMAX)	6 W	
Power connector	2.1/5.5 mm	
Power adaptor (included)	90-264V AC, $47-66 \mathrm{~Hz}, 12 \mathrm{~V}$ DC	
Dimensions (oven)	$\emptyset 25.4 \times 30.5 \mathrm{~mm}$	$\varnothing 25.4 \times 45.5 \mathrm{~mm}$
Dimensions (thermocontroller)	$60 \times 14 \times 7.5 \mathrm{~mm}$	
Distance (wiring length) from oven to thermocontroller	250 mm	
Price, EUR	350	350

Heatpoint HP30

HP30 dimensions

Heatpoint HP30 with thermocontroller

Related products

Positioning mount 840-0193

[^0]: Please note that from now all standard GaSe crystals are provided mounted into $\emptyset 25.4 \mathrm{~mm}$ ring holders.

