

Crystals Selection Guide

Nonlinear Crystals

LBO

LITHIUM TRIBORATE

wide transparency region

non-critical phase-matching

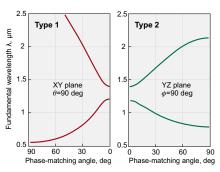
broad Type 1 and Type 2

(NCPM) range

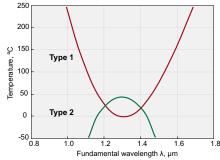
small walk-off angle

high damage threshold

wide acceptance angle


high optical homogeneity

LBO is well suited for various nonlinear optical applications:


- frequency doubling and tripling of high peak power pulsed Nd doped, Ti:Sapphire and Dye lasers
- optical parametric oscillators (OPO) of both Type 1 and Type 2 phase-matching
- non-critical phase-matching for frequency conversion of CW and quasi-CW radiation.

EKSMA OPTICS OFFERS

- crystals length up to 50 mm and aperture up to 40 × 40 mm
- thin crystals down to 10 µm thickness
- AR, BBAR, P-coating
- different mounting and repolishing services
- accurate quality control
- attractive prices and fast delivery
- one month customer's satisfaction term.

SHG tuning curves of LBO

NCPM SHG temperature dependance of LBO

PHYSICAL AND OPTICAL PROPERTIES

Observiced from the	1:00		
Chemical formula	LiB ₃ O ₅		
Crystal structure	orthorhombic, mm2		
Optical symmetry	Negative biaxial		
Space group	Pna2 ₁		
Density	2.47 g/cm ³		
Mohs hardness	6		
Optical homogeneity	$\partial n = 10^{-6} \text{ cm}^{-1}$		
Transparency region at "0" transmittance level	155 – 3200 nm		
Linear absorption coefficient at 1064 nm	< 0.01 % cm ⁻¹		
Refractive indices:	n_x n_y n_z		
at 1064 nm	1.5656 1.5905 1.6055		
at 532 nm	1.5785 1.6065 1.6212		
at 355 nm	1.5971 1.6275 1.6430		
Sellmeier equations (λ, μm)	$n_x^2 = 2.4542 + 0.0113 / (\lambda^2 - 0.0114) - 0.0139 \lambda^2$		
	$n_v^2 = 2.5390 + 0.0128 / (\lambda^2 - 0.0119) - 0.0185 \lambda^2$		
	$n_z^2 = 2.5865 + 0.0131 / (\lambda^2 - 0.0122) - 0.0186 \lambda^2$		
Phase matching range Type 1 SHG	554 – 2600 nm		
Phase matching range Type 2 SHG	790 – 2150 nm		

NCPM SHG temperature dependence:	
Type 1 range 950 – 1300 nm	$T1 = -1893.3\lambda^4 + 8886.6\lambda^3 - 13019.8\lambda^2 + 5401.5\lambda + 863.9$
Type 1 range 1300 – 1800 nm	$T2 = 878.1\lambda^4 - 6954.5\lambda^3 + 20734.2\lambda^2 - 26378\lambda + 12020$
Type 2 range 1100 – 1500 nm	$T3 = -21630.6\lambda^4 + 112251\lambda^3 - 220460\lambda^2 + 194153\lambda - 64614.5$
NCPM SHG at 1064 nm Type 1 temperature	149 °C
NCPM SHG at 1319 nm Type 2 temperature	43 °C
Walk-off angle	4 mrad (Type 1 SHG 1064 nm)
Thermal acceptance	6.4 K×cm (Type 1 SHG 1064 nm)
Angular acceptance	6.5 mrad×cm (Type 1 SHG 1064 nm)
	248 mrad×cm (Type 1 NCPM SHG 1064 nm)
Nonlinearity coefficients:	$d_{31} = (1.09 \pm 0.09) \text{ pm/V}$
	$d_{32} = (1.17 \pm 0.14) \text{ pm/V}$
Effective nonlinearity:	
XY plane	$d_{ooe} = d_{32} \cos \varphi$
YZ plane	$d_{oeo} = d_{eoo} = d_{31} \cos\theta$
Damage threshold for TEM ₀₀ 1064 nm	> 10 GW/cm ² at 10 ns

LBO crystals for SHG of Yb:KGW/KYW laser frequency conversion

Femt* Line see page: 5.30

Delivery from stock!

Please contact EKSMA OPTICS for special OEM and large volume pricing.

Please contact EKSMA OPTICS for further information or nonstandard specifications.

STANDARD SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10/5 scratch/dig as per MIL-O-13830A
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

STANDARD CRYSTALS LIST

Code	Size, mm	θ, deg	φ, deg	Coating	Application	Price, EUR
LBO-401	3x3x10	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	245
LBO-402	3x3x15	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	325
LBO-403	5x5x15	90	11.6	AR/AR @ 1064+532 nm	SHG @ 1064 nm	765
LBO-404	3x3x15	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	325
LBO-405	3x3x20	90	0	AR/AR @ 1064+532 nm	NCPM SHG @ 1064 nm, T = 149 °C	405
LBO-406	3x3x10	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	245
LBO-407	3x3x15	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	325
LBO-408	5x5x15	42.2	90	AR/AR @ 1064+532/355 nm	THG @ 1064 nm	765

HOUSING ACCESSORIES

 Ring Holders for Nonlinear Crystals
 See page 2.27 for more information.

 Positioning Mount 840-0056 See page 2.28 for more information.

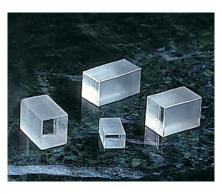
Kinematic
 Positioning
 Mount
 840-0193
 See page 2.28
 for more information.

149 °C temperature is required to achieve Non-Critical Phase Matching (NCPM) in LBO at type 1 SHG of 1064 nm application. **TC1 oven** is specially designed for this purpose (see technical specifications, p. 2.30).

CH7 oven is designed to keep the crystal at the elevated temperature (40–60 °C) for thermostabilisation of nonlinear crystal. The elevation of working temperature also extends hygroscopic crystals lifetime. LBO crystal is slightly hygroscopic and polished faces could become foggy after some time of exposition of crystal at ambient environment.

RELATED PRODUCTS

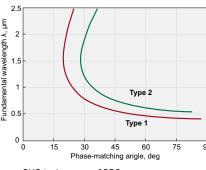
Crystal Oven TC1
 See page 2.30
 for more information.


 Nonlinear Crystal Oven CH7
 See page 2.33 for more information.

EKSMA OPTICS

BBO

BETA BARIUM BORATE


- wide transparency region
- broad phase-matching range
- large nonlinear coefficient
- high damage threshold
- wide thermal acceptance bandwidth
- high optical homogenity

As a result of its excellent properties BBO has a number of advantages for different applications:

- harmonic generations (up to fifth) of Nd doped lasers
- frequency doubling and tripling of ultrashort pulse Ti:Sapphire and Dye lasers
- optical parametric oscillators (OPO) at both Type 1(ooe) and Type 2 (eoe) phase-matching
- frequency doubling of Argon ion and Copper vapour laser radiation
- electro-optic crystal for Pockels cells
- ultrashot pulse duration measurements by autocorrelation.

EKSMA OPTICS OFFERS

- crystal aperture up to 22 × 22 mm
- crystal length up to 20 mm
- thin crystals down to 5 µm thickness
- AR, BBAR, P-coating
- BBO with gold electrodes for e/o applications
- different mounting and repolishing services
- accurate quality control
- attractive prices and fast delivery
- one month customer's satisfaction term

SHG tuning curve of BBO

Observational formattic

OPO tuning curves of BBO at 355 nm pump

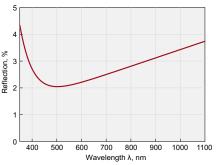
BBO with gold electrodes for e/o applications

PHYSICAL AND OPTICAL PROPERTIES

Chemical formula	BaB_2O_4			
Crystal structure	trigonal, 3m			
Optical symmetry	Negative Uniaxial (n _o >n _e)			
Space group	R3c			
Density	3.85 g/cm ³			
Mohs hardness	5	5		
Optical homogeneity	∂ n = 10 ⁻⁶ cm ⁻¹			
Transparency region at "0" transmittance level	189 – 3500 nm			
Linear absorption coefficient at 1064 nm	< 0.1% cm ⁻¹			
Refractive indices	n _o	n _e		
at 1064 nm	1.6551	1.5426		
at 532 nm	1.6750	1.5555		
at 355 nm	1.7055	1.5775		
at 266 nm	1.7571	1.6139		
at 213 nm	1.8465	1.6742		
Sellmeier equations (λ, μm)	$n_0^2 = 2.7405 + 0.0184$	$4/(\lambda^2 - 0.0179) - 0.0155 \lambda^2$		
	$n_e^2 = 2.3730 + 0.0128$	$8 / (\lambda^2 - 0.0156) - 0.0044 \lambda^2$		
Phase matching range Type 1 SHG	410 – 3300 nm			
Phase matching range Type 2 SHG	530 – 3300 nm	530 – 3300 nm		
Walk-off angle	55.9 mrad (Type 1 SHG 1064 nm)			
Angular acceptance	1.2 mrad × cm (Type 1 SHG 1064 nm)			
Thermal acceptance	70 K × cm (Type 1 SHG 1064 nm)			
Nonlinearity coefficients	$d_{22} = \pm (2.22 \pm 0.09) \text{ pm/V}$			
	$d_{31} = \pm (0.16 \pm 0.08) \text{ pr}$	n/V		
Effective nonlinearity expressions	$d_{ooe} = d_{31} \sin\theta - d_{22} \cos\theta \sin3\phi$			
	$d_{eoe} = d_{oee} = d_{22} \cos^2 \theta$	θ cos3φ		
Damage threshold for TEM ₀₀ 1064 nm	> 0.5 GW/cm ² at 10 i	ns		
	~ 50 GW/cm ² at 1 ps			

STANDARD SPECIFICATIONS

Flatness	up to λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10/5 scratch/dig as per MIL-O-13830A
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture


STANDARD CRYSTALS LIST

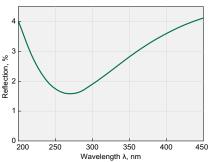
Catalogue number	Size, mm	θ, deg	φ, deg	Coating	Application	Price, EUR
BBO-601H	6×6×0.1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	505
BBO-602H	6×6×0.2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	505
BBO-603H	6×6×0.5	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	410
BBO-604H	6×6×1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	310
BBO-605H	6×6×2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	310
BBO-609H	6×6×0.1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	505
BBO-610H	6×6×0.2	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	505
BBO-611H	6×6×0.5	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	410
BBO-612H	6×6×1	44.3	90	P/P @ 400-800/266 nm	THG @ 800 nm, Type 1	310
BBO-1001H	10×10×0.1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	725
BBO-1002H	10×10×0.2	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	725
BBO-1003H	10×10×0.5	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	660
BBO-1004H	10×10×1	29.2	90	P/P @ 400-800 nm	SHG @ 800 nm, Type 1	625

To order unmounted BBO crystals, please remove letter H from code and deduct 50 EUR from price for ring holder.

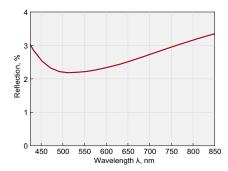
For safe and convenient handling of BBO crystals, we highly recommend open ring holders. Standard BBO crystals are provided mounted into 25.4 mm diameter ring holder.

P-protective coating. It's a single or two layers antireflection coating made at specified wavelength range. Typical reflection values are R≈2% in the mid range, R<4% at the edges. P coating is recommended for ultrashort pulses applications and features low dispersion.

Typical P-coating for BBO SHG@800 nm application



Thin BBO crystals for SHG and THG of Ti:Sapphire laser wavelength


Femt* Line see pages: 5.23

BBO crystals for SHG of Yb:KGW/KYW laser frequency conversion

Femt* Line see pages: 5.30

Typical coating for BBO THG@800 nm or SHG@532 nm applications (output face P@266 nm)

Typical coating for BBO SHG@532 nm application (input face P@532 nm)

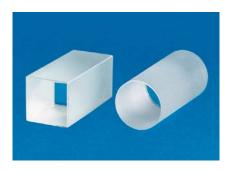
Please contact EKSMA OPTICS for special OEM and large volume pricing.

HOUSING ACCESSORIES

 Ring Holders for Nonlinear Crystals See page 2.27 for more information.

Positioning Mount 840-0199
 for Nonlinear
 Crystal Hausing

Crystal Housing
Accepts crystals


with aperture up to 12x12 mm and thichness up to 3 mm.

See page 2.29 for more information.

KDP • DKDP

APPLICATIONS

- Laser frequency conversion harmonic generation for high pulse energy, low repetition (<100 Hz) rate lasers:
- Electro-optical modulation;
- Q-switching crystal for Pockels cells.

ELECTRO-OPTICAL/Q-SWITCHING APPLICATION

- EKSMA OPTICS offers highly deuterated D>96% electro-optic crystal – DKDP for Q-switching application;
- Standard dimensions of electrooptic DKDP crystals for Q-switching are cylinders dia 9×20 mm and dia 12×24 mm however manufacturing of custom size and rectangular shape crystals is available;
- Gold evaporated or silver paste electrodes are available;
- Dielectric thin film AR coatings for specified laser wavelengths are available:
- Typical quarter wave voltage 3.4 kV at 1064 nm;
- Typical contrast ratio between crossed polarizers better than 1:2000;
- Damage threshold of AR coated DKDP surface >5 J/cm² at 1064 nm, 10 ns pulses.

POTASSIUM DIDEUTERIUM PHOSPHATE

FREQUENCY CONVERSION APPLICATIONS

- DKDP crystals are used for second harmonic generation of high pulse energy low repetition rate (<100 Hz) Q-switched and mode-locked Nd:YAG lasers. Cut angle of crystal for operation at room temperature is 36.6° for Type 1 phase matching and 53.7° deg for Type 2 phase matching.
- DKDP crystals are used for third harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers via sum frequency generation. Cut angle of crystal for operation at room temperature is 59.3° for Type 2 phase matching.
- Type 1 DKDP crystals with non-critical cut angle θ=90° are used for fourth harmonic generation (532 nm → 266 nm) of high pulse energy Q-switched and mode-locked Nd:YAG lasers. Crystal must be heated at ~50 °C temperature to match NCPM conditions
- Type 1 KDP crystals with close to non-critical cut angle θ=76.5° are used for fourth harmonic generation (532 nm → 266 nm) of high pulse energy Q-switched and modelocked Nd:YAG lasers. KDP has lower absorption at UV wavelengths comparing to DKDP
- KDP thin crystals are used for second harmonic generation of Ti:Sapphire laser radiation or pulse duration measurement in single shot autocorrelators. KDP possesses ~2.4 times larger spectral acceptance and correspondingly smaller group velocity mismatch comparing to BBO crystal for SHG of 800 nm, what sometime is very critical parameter for femtosecond wide spectrum pulses.
- KDP crystals can be supplied by EKSMA OPTICS of aperture up to Ø80 mm. Actually KDP remains the only solution for harmonic generation of very high intensity femtosecond Ti:Sapphire lasers featuring sub-tera Watt or tera Watt peak power pulses in large >30 mm diameter beams.

PHYSICAL AND OPTICAL PROPERTIES

Crystals		KDP	DKDP
Chemical formula		KH₂PO₄	KD₂PO₄
Symmetry		42 m	42 m
Hygroscopicity		high	high
Density, g/cm ³		2.332	2.355
Thermal conductivity, W/cm×K		k ₁₁ = 1.9×10 ⁻²	k ₁₁ = 1.9×10 ⁻² k ₃₃ = 2.1×10 ⁻²
Thermal expansion coefficients, K-1		a ₁₁ = 2.5×10 ⁻⁵ a ₃₃ = 4.4×10 ⁻⁵	a_{11} = 1.9×10 ⁻⁵ a_{33} = 4.4×10 ⁻⁵
Transmission range, µm		0.18-1.5	0.2-2.0
Residual absorption, cm ⁻¹ (at 1.06 µm)		0.04	0.005
Measured refractive index (at 1.06 μm)		$n_o = 1.4938$ $n_e = 1.4599$	n _o = 1.4931 n _e = 1.4582
Sellmeier coeff., λ – wavelength in μm		$n^2 = A + \frac{B \lambda^2}{\lambda^2 - C}$	$\frac{D}{\lambda^2 - E}$
Α	n _o n _e	2.259276 2.132668	2.2409 2.1260
В	n _o n _e	13.00522 3.2279924	2.2470 0.7844
С	n _o n _e	400 400	126.9205 123.4032
D	n _o n _e	0.01008956 0.008637494	0.0097 0.0086
E	n_o	0.012942625	0.0156
<u> </u>	n_e	0.012281043	0.0120
Nonlinear coeff. d ₃₆ , pm/V (at 1.06 μm)		0.43	0.40
Effective nonlinear coefficient Type 1 Type 2		$d_{ooe} = d_{36} \times si$ $d_{eoe} = d_{36} \times si$	
Laser damage threshold, GW/cm² at 1.06 μm		10 ps – 100 1 ns – 10 15 ns – 14.4	250 ps – 6 10 ns – 0.5

PHASE MATCHING ANGLES AND BANDWIDTHS FOR SHG OF 1064 nm

Crystal	KDP		DK	DP
Type of phase matching	Type 1 ooe	Type 2 eoe	Type 1 ooe	Type 2 eoe
Cut angle θ , deg	41.2	59.1	36.6	53.7
Acceptances for crystal of 1 cm length (FWHM):				
$\Delta\theta$ (angular), mrad	1.1	2.2	1.2	2.3
ΔT thermal, K	10	11.8	32.5	29.4
Δλ spectral, nm	21	4.5	6.6	4.2
Walk off, mrad	28	25	25	25

STANDARD SPECIFICATIONS

Flatness	λ/6 at 633 nm
Parallelism	< 20 arcsec
Surface quality	20/10 scratch/dig as per MIL-O-13830A
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

ADP, DADP, RDP, CDA and DCDA crystals are available upon request!

STANDARD CRYSTALS LIST

Code	Size, mm	θ, deg	φ, deg	Coating	Application	Price, EUR
DKDP-401	15x15x13	36.5	45	AR/AR @ 1064+532 nm	SHG @ 1064 nm, Type 1	485
DKDP-402	15x15x13	53.5	0	AR/AR @ 1064+532 nm	SHG @ 1064 nm, Type 2	485
DKDP-403	12x12x20	59.3	0	AR/AR @ 1064+532 / 355 nm	THG @ 1064 nm, Type 2	475
DKDP-404	12x12x20	53.5	0	AR/AR @ 1064 / 1064+532 nm	SHG @ 1064 nm	475
DKDP-405	15x15x20	53.5	0	AR/AR @ 1064 / 1064+532 nm	SHG @ 1064 nm	579
DKDP-406	15x15x20	59.3	0	AR/AR @ 1064+532 / 355 nm	THG @ 1064 nm	579
KDP-401	12x12x5	76.5	45	AR/AR @ 532/266 nm	SHG @ 532 nm	405
KDP-402	15x15x7	76.5	45	AR/AR @ 532/266 nm	SHG @ 532 nm	480

Delivery from stock!

Please contact EKSMA OPTICS for special OEM and large volume pricing.

RELATED PRODUCTS

- Nonlinear Crystal Oven CH3 See page 2.31 for more information.
- Nonlinear Crystal Oven CH4
 See page 2.32 for more information.

DKDP and KDP crystals are highly hygroscopic. CH3 and CH4 ovens help to protect hygroscopic crystals from moisture. The raised working temperature (40-60 °C) allows to extend crystal lifetime and to keep it thermostable. This helps to stabilise SHG efficiency.

KTP

POTASSIUM TITANYL PHOSPHATE

EKSMA OPTICS OFFERS

- Crystal size up to 10×10×20 mm
- Singleband and dualband AR and BBAR coatings
- Standard and customised mounts and housings
- Free technical consulting.

EKSMA OPTICS GUARANTEES

- Accurate quality control
- One month customer's satisfaction term
- Conformity of crystal specifications to highest standards
- Attractive prices
- Fast delivery.

KTP (KTiOPO₄) is a nonlinear optical crystal, which possesses excellent nonlinear, electrooptical and acousto-optical properties. A combination of high nonlinear coefficient, wide transparency range, and broad angular as well as thermal acceptances makes KTP very attractive for different nonlinear optical and wave-quide applications.

KTP is a standard crystal mostly used in extracavity configuration when a single pass through the crystal is required.

KTP crystals are optimised for SHG intracavity configuration in low peak power CW lasers. Due to the large number of passes through the crystal, low insertion losses and high homogeneity are essential for conversion efficiency. The special highest quality material selected by SHG efficiency mapping of each crystal, fine surface polishing and dual band AR coatings with very low losses allow EKSMA OPTICS to produce KTP crystals suitable for intracavity SHG application.

Fig. 1 represents Type 2 SHG tuning curve of KTP in x-y plane. In x-y plane the slope $\partial(\Delta k)/\partial\theta$ is small. This corresponds to quasi-angular noncritical phase-matching, which ensures the double advantage of a large acceptance angle and a small walk off. Otherwise in x-z plane the slope $\partial(\Delta k)/\partial\lambda$ is almost zero for wavelengths in the range 1.5-2.5 µm and this corresponds to quasi-wavelength noncritical phasematching, which ensures a large spectral acceptance (see Fig. 2). Wavelength noncritical phase-matching is highly desirable for frequency conversion of short pulses. As a lasing material for OPG, OPA or OPO, KTP can most usefully be pumped by Nd lasers and their second harmonic or any other source with intermediate wavelength, such as a dye laser (near 600 nm). Fig. 3 and Fig. 4 show the phasematching angles for OPO/OPA pumped at 532 nm in x-y and x-z plane respectively.

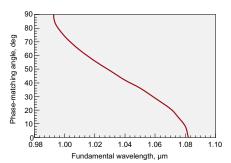


Fig. 1. Type 2 SHG in x-y plane

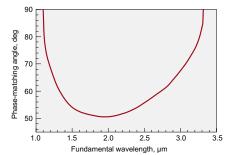


Fig. 2. Type 2 SHG in x-z plane

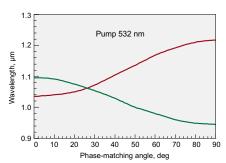


Fig. 3. OPO tuning curve in x-y plane

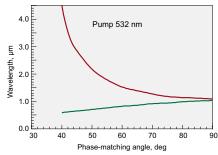


Fig. 4. OPO tuning curve in x-z plane

Please contact EKSMA OPTICS for special OEM and large volume pricing.

PHYSICAL PROPERTIES

Crystal structure	orthorhombic
Point group	mm2
Space group	Pna2 ₁
Lattice constants, Å	a = 6.404, b = 10.616, c = 12.814, z = 8
Density, g/cm ³	3.01
Melting point, °C	1172
Transition temperature, °C	936
Mohs hardness	5
Thermal expansion coefficients, °C-1	$a_x = 11 \times 10^{-6}$, $a_y = 9 \times 10^{-6}$, $a_z = 0.6 \times 10^{-6}$
Thermal conductivity, W/cm°C	13
Not hygroscopic	

OPTICAL PROPERTIES

Transparency	350–4400 nm	
Refractive indices	at 1064 nm	at 532 nm
	n _x = 1.7404	$n_x = 1.7797$
	n _y = 1.7479	$n_y = 1.7897$
	n _z = 1.8296	$n_z = 1.8877$
Thermooptic coefficients in 0.4 – 1.0 µm range	$\partial n_x / \partial T = 1.1 \times 10^{-5} (K)^{-1}$	
	$\partial n_y / \partial T = 1.3 \times 10^{-5} (K)^{-1}$	
	$\partial n_z / \partial T = 1.6 \times 10^{-5} (K)^{-1}$	
Wavelength dispersion of refractive indices	$n_x^2 = 3.0067 + 0.0395/(\lambda^2 - 0.0000)$	4251)-0.01247×λ²
	$n_y^2 = 3.0319 + 0.04152/(\lambda^2 - 0.04152)$.04586)-0.01337×λ ²
	$n_z^2 = 3.3134 + 0.05694/(\lambda^2 - 0.05694)$.05941)-0.016713×λ ²

NONLINEAR PROPERTIES

Phase matching range for:	
Type 2 SHG in x-y plane	0.99÷1.08 μm
Type 2 SHG in x-z plane	1.1÷3.4 μm
For Type 2, SHG @ 1064 nm, cut angle θ=90°, φ	p=23.5°
Walk-off	4 mrad
Angular acceptances	$\Delta\theta$ = 55 mrad × cm
	$\Delta \phi$ = 10 mrad × cm
Thermal acceptance	$\Delta T = 22 \text{ K} \times \text{cm}$
Spectral acceptance	$\Delta v = 0.56 \text{ nm} \times \text{cm}$
Up to 80% extracavity SHG efficiency	
Effective nonlinearity	
x-y plane	$d_{eoe} = d_{oee} = d_{15} sin^2 \phi + d_{24} cos^2 \phi$
x-z plane	$d_{oeo} = d_{eoo} = d_{24} \sin\theta$
	d_{31} = ± 1.95 pm/V d_{32} =± 3.9 pm/V
	d_{33} = ± 15.3 pm/V d_{24} = d_{32} d_{15} = d_{31}
Damage threshold	>500 MW/cm ² for pulses λ =1064 nm, τ =10 ns, 10 Hz, TEM ₀₀

STANDARD SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10/5 scratch/dig as per MIL-O-13830A
Perpendicularity	<5 arcmin
Angle tolerance	<30 arcmin
Aperture tolerance	± 0.1 mm
Clear aperture	90% of full aperture

STANDARD CRYSTALS LIST

Code	Size, mm	θ	φ	Coating	Application	Price, EUR
KTP-401	3x3x5	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	76
KTP-402	3x3x10	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	109
KTP-403	4x4x6	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	118
KTP-404	7x7x9	90	23.5	AR/AR @ 1064+532 nm	SHG @ 1064 nm	529

HOUSING ACCESSORIES

- Ring Holders for Nonlinear Crystals See page 2.27 for more information.
- Positioning Mount 840-0199 for Nonlinear Crystal Housing See page 2.29 for more information.

RELATED PRODUCTS

- Crystal Oven TC1 See page 2.30 for more information.
- Nonlinear Crystal Oven CH7 See page 2.33 for more information.

EKSMA OPTICS

KTA

cantly reduced absorption in band range of

2.0-5.0 µm, broad angular and tempera-

ture bandwidth, low dielectric constants.

Potassium titanyle arsenate (KTiOAsO₄), or KTA, is a nonlinear optical crystal for Optical Parametric Oscillation (OPO) application. It has good nonlinear optical and electro-optical properties, e.g. signifi-

POTASSIUM TITANYLE ARSENATE

PRIMARY APPLICATIONS

- OPO for mid IR generation up to 4 µm
- Sum and Difference Frequency Generation in mid IR range
- Electro-optical modulation and Q-switching

EKSMA OPTICS OFFERS:

- KTA crystals size up to 15×15×30 mm
- AR and BBAR coatings for VIS-IR and mid IR ranges
- Standard and customized mounts and housings
- Technical consulting

SPECIFICATIONS

Flatness	λ/8 at 633 nm
Parallelism	< 20 arcsec
Surface quality	10/5 scratch/dig (MIL-PRF-13830B)
Perpendicularity	<15 arcmin
Angle tolerance	<± 0.2°
Aperture tolerance	± 0.1 mm
Clear aperture	> 90% central area
Transmitting wavefront distortion	less than λ/8 @ 633 nm

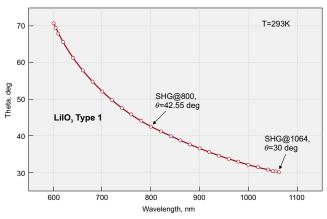
PHYSICAL PROPERTIES

Crystal structure	orthorhombic
Point group	mm2
Space group	Pna21
Lattice constants, Å	a = 13.125, b = 6.5716, c = 10.786
Density, g/cm ³	3.45
Melting point, °C	1130
Mohs hardness	5
Thermal conductivity, W/m×K	k ₁ =1.8, k ₂ =1.9, k ₃ =2.1
Not hygroscopic	

NONLINEAR & OPTICAL PROPERTIES

Transparency	350 – 5300 nm
Maria I and the discount of	$n_x^2 = 1.90713 + 1.23522 \times \lambda^2 / (\lambda^2 - 0.196922) - 0.01025 \times \lambda^2$
Wavelength dispersion of refractive indices	$n_y^2 = 2.15912 + 1.00099 \times \lambda^2 / (\lambda^2 - 0.218442) - 0.01096 \times \lambda^2$
	$n_z^2 = 2.14768 + 1.29559 \times \lambda^2 / (\lambda^2 - 0.227192) - 0.01436 \times \lambda^2$
Electro optical constants	$r_{33} = 37.5 \text{ pm/V}, r_{23} = 15.4 \text{ pm/V}, r_{13} = 11.5 \text{ pm/V}$
Effective nonlinearity	
x-y plane	$d_{eoe} = d_{oee} = d_{15} \sin^2 \varphi + d_{24} \cos^2 \varphi$
x-z plane	$d_{oeo} = d_{eoo} = d_{24} sin\theta$
	d ₃₁ =2.3 pm/V, d ₃₂ =3.66 pm/V, d ₃₃ =15.5 pm/V
	d ₂₄ = 3.64 pm/V, d ₁₅ = 2.3 pm/V
Damage threshold	>500 MW/cm² for pulses λ =1064 nm, τ =10 ns, 10 Hz, TEM $_{00}$

LilO₃


LITHIUM IODATE

APPLICATIONS

- Harmonic generators
- Thin LilO₃ for autocorrelation measurements

EKSMA OPTICS OFFERS:

- The mass production of LilO₃ crystals
- Attractive discounts for OEM customers
- Different shapes (slabs, cylinders, Brewster ends) are available
- Standard open ring holders
- Recoating and repolishing service
- AR, BBAR and P coatings according to customer's choice
- P-coatings optimised at pump wavelengths
- BBAR coatings for wavelength tuned Ti:Sapphire and other lasers.

LiIO₃ Second harmonic generation phasematching

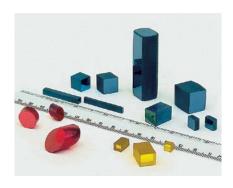
PHYSICAL AND OPTICAL PROPERTIES

Crystal structure		hexagonal		
Point group		6		
Density, g/cm ³		4.487		
Mohs hardness		3.5-4.0		
Transparency range,	nm	280–4000		
Absorption at 1064 n	ım, cm ⁻¹	< 0.05		
Refractive indices	at 1064 nm	n _o = 1.8571, n _e = 1.7165		
	at 800 nm	n _o = 1.8676, n _e = 1.7245		
	at 532 nm	$n_o = 1.8982, n_e = 1.7480$		
Phase matching rang	ge for Type 1 SHG, nm	570–4000		
Acceptances for Type	e 1 SHG at 1064 nm			
	Angular, mrad×cm	0.77		
	Spectral, cm ⁻¹ ×cm	12.74		
Walk-off for Type 1 S	SHG at 1064 nm, mrad	74.30		
Nonlinear optical coe	efficient d ₁₅ , pm/V	2.2 (at 1064 nm)		
Effective nonlinearity	1	$d_{ooe} = d_{15} \sin\theta$		
Damage threshold, N	/IW/cm ²	> 100 for TEM ₀₀ , 1064 nm, 10 ns, 10 Hz		
Wavelength dispersion	on of refractive indices (λ – in μm)			
$n_o^2 = 2.0836$	$648 + \frac{1.332068 \lambda^2}{\lambda^2 - 0.035306} - 0.008525 \lambda^2$	$n_e^2 = 1.673463 + \frac{1.245229 \lambda^2}{\lambda^2 - 0.028224} - 0.003641 \lambda^2$		

SPECIFICATIONS

Flatness	λ/6 at 633 nm
Parallelism	< 30 arcsec
Surface quality	20/10 scratch/dig as per MIL-O-13830A
Perpendicularity	<5 arcmin
Angle tolerance ($\Delta\theta$ & $\Delta\phi$)	<30 arcmin
Clear aperture	90% of full aperture

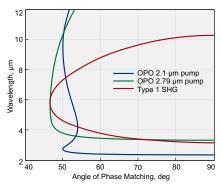
HOUSING ACCESSORIES


- Ring Holders for Nonlinear Crystals
 See page 2.27 for more information.
 - 00
- Positioning Mount 840-0199 for Nonlinear Crystal Housing See page 2.29 for more information.

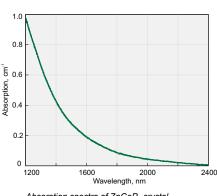
ZnGeP₂ • AgGaSe₂ AgGaS₂ • GaSe

INFRARED NONLINEAR CRYSTALS

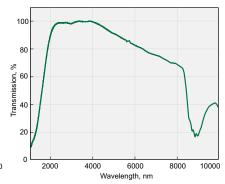
Optical nonlinear crystals ZnGeP₂, AgGaSe₂, AgGaSe₂, GaSe have gained tremendous interest for middle and deep infrared applications due to their unique features. The crystals have large effective optical nonlinearity, wide spectral and angular acceptances, broad transparency range, non-critical requirements for temperature stabilization and vibration control, are well mechanically processed (except GaSe).


ZnGeP₂

 ${\rm ZnGeP_2}$ has band edges at 0.74 and 12 ${\rm \mu m}$ with useful transmission range from 1.9 to 10.6 ${\rm \mu m}$. ${\rm ZnGeP_2}$ has the largest nonlinear optical coefficient and relatively high laser damage threshold. It was successfully used in the following applications:


- up-conversion of CO₂ laser light to near IR range via mixing with 10.6 μm;
- sum frequency generation of CO and CO₂ laser radiation;
- efficient SHG of pulsed CO, CO₂ and chemical DF-laser, OPO light generation in mid infrared when pumped by erbium and holmium lasers.

ZnGeP₂ crystals with lowest absorption <0.04 cm⁻¹ @ 2.1 µm are available from


EKSMA OPTICS for better suitability for OPO or OPA application, then pumping 2.05–2.1 µm, with antireflection coatings.

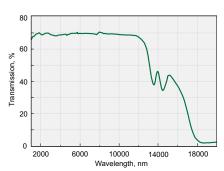
Type 1 OPO and SHG tuning curves in ZnGeP₂

Absorption spectra of $ZnGeP_2$ crystal near 2 μm

Transmission spectra of 15 mm long AR coated $ZnGeP_2$ crystal for OPO @ 2.1 μm

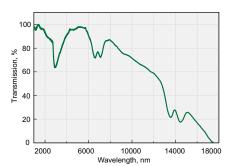
ZGP TYPE 1 CRYSTALS

Catalogue number	Size, mm	θ, deg	φ, deg	Coating	Application
ZGP-401	7×5×15	54	0	AR @ 2.1 μm + BBAR @ 3.5-5 μm	OPO @ 2.1 μm
ZGP-402	7×5×20	54	0	AR @ 2.1 μm + BBAR @ 3.5-5 μm	OPO @ 2.1 μm
ZGP-403	7×5×25	54	0	AR @ 2.1 μm + BBAR @ 3.5-5 μm	OPO @ 2.1 μm


AgGaSe₂

18
15
15
17
18
0PO 1.55 µm pump
0PO 2.1 µm pump
Type 1 SHG

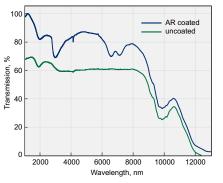
3
35 40 50 50 70 80 90
Angle of Phase Matching, deg

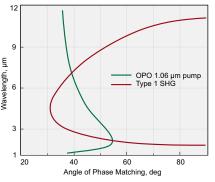

Type 1 OPO and SHG tuning curves in AgGaSe₂

 ${\rm AgGaSe_2}$ has band edges at 0.73 and 18 µm. Its useful transmission range of 0.9–16 µm and wide phase matching capability provide excellent potential for OPO applications when pumped by a variety of currently available lasers. Tuning from

Transmission spectra of 18 mm long uncoated AgGaSe₂ crystal

 $2.5-12 \, \mu m$ has been obtained when pumping by Ho:YLF laser at $2.05 \, \mu m$; as well as NCPM operation from $1.9-5.5 \, \mu m$ when pumping at $1.4-1.55 \, \mu m$. Efficient SHG of pulsed CO_2 laser has been demonstrated.




Transmission spectra of 25 mm long AR coated AgGaSe₂ crystal

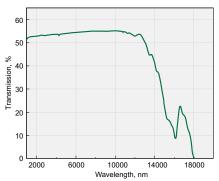
AgGaS₂

AgGaS $_2$ is transparent from 0.53 to 12 µm. Although nonlinear optical coefficient is the lowest among the above mentioned infrared crystals, its high short wavelength transparency edging at 550 nm is used in OPOs pumped by Nd:YAG laser; in numerous difference frequency mixing experiments using diode, Ti:Sapphire, Nd:YAG and IR dye lasers covering 3–12 µm range; direct infrared countermeasure systems, and SHG of CO $_2$ laser.

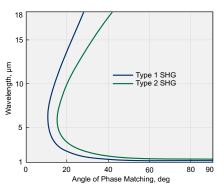
Transmission spectra of 14 mm long AR coated and uncoated AgGaS₂ crystal used for OPO pumped by Nd:YAG laser

Type 1 OPO and SHG tuning curves in AgGaS₂

LIST OF STANDARD AgGaS2 CRYSTALS


Code	Size, mm	θ, deg	φ, deg	Coating	Application	Price, EUR
AGS-401H	5×5×1	39	45	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	OPO @ 1.2-2.4 μm -> 2.4-11 μm	695
AGS-402H	6×6×2	50	0	BBAR/BBAR @ 1.1-2.6 / 2.6-11 μm	OPO @ 1.2-2.4 μm -> 2.4-11 μm	770

Crystals are mounted into open ring holders (see page 2.27).


GaSe

GaSe has band edges at 0.65 and 18 μ m. GaSe has been successfully used for efficient SHG of CO₂ laser, for SHG of pulsed CO, CO₂ and chemical DF-laser (λ = 2.36 μ m) radiation; up conversion of CO and CO₂ laser radiation into the visible range; infrared pulses generation via difference frequency mixing of Neodym-

ium and infrared dye laser or (F-)-centre laser pulses; OPG light generation within 3.5–18 μ m; efficient TeraHertz generation in 100–1600 μ m range. It is impossible to cut crystals for certain phase matching angles because of material structure (cleave along (001) plane) limiting areas of applications.

Transmission spectra of 17 mm long uncoated GaSe crystal

Type 1 and Type 2 SHG tuning curves in GaSe

Cleaved GaSe crystal glued into special ring holder

HOUSING ACCESSORIES

Ring Holders for Nonlinear Crystals
 See page 2.27 for more information.

PHYSICAL PROPERTIES

Crystal		ZnGeP₂	AgGaSe₂	AgGaS₂	GaSe
Crystal Symmetry		Tetragonal	Tetragonal	Tetragonal	Hexagonal
Point Group		42m	42m	42m	62m
Lattice Constants, Å	а	5.465	5.9901	5.757	3.742
	С	10.771	10.8823	10.305	15.918
Density, g/cm ³		4.175	5.71	4.56	5.03

OPTICAL PROPERTIES

Crystal		ZnGeP ₂	AgGaSe₂	AgGaS ₂	GaSe
Optical transmission, µm		0.74–12	0.73–18	0.53-12	0.65–18
Indices of Refraction at					
1.06 µm	n _o n _e	3.2324 3.2786	2.7005 2.6759	2.4508 2.3966	2.9082 2.5676
5.3 µm	n _o n _e	3.1141 3.1524	2.6140 2.5823	2.3954 2.3421	2.8340 2.4599
10.6 µm	n _o n _e	3.0725 3.1119	2.5915 2.5585	2.3466 2.2924	2.8158 2.4392
Absorption Coefficient, cm	¹ at				
1.06 µm		3.0	<0.02	<0.09	0.25
2.5 µm		0.03	<0.01	0.01	0.05
5.0 µm		0.02	<0.01	0.01	0.05
7.5 µm		0.02	-	0.02	0.05
10.0 µm		0.4	_	<0.6	0.05
11.0 µm		0.8	-	0.6	0.05

NONLINEAR OPTICAL PROPERTIES

Crystal	ZnGeP ₂	AgGaSe ₂	AgGaS₂	GaSe
Laser damage threshold, MW/cm²	60	25	10	28
at pulse duration, ns	100	50	20	150
at wavelength, µm	10.6	2.05	1.06	9.3
Nonlinearity, pm/V	111	43	31	63
Phase matching angle for Type 1 SHG at 10.6 µm, deg	76	55	67	14
Walk-off angle at 5.3 µm, deg	0.57	0.67	0.85	3.4

THERMAL PROPERTIES

Crystal		ZnGeP ₂	AgGaSe ₂	AgGaS ₂	GaSe
Melting point, °C		1298	851	998	1233
Thermal Expansion Coefficient, 10-6/°K					
	Т	17.5 ^(a)	23.4 ^(c)	12.5	9.0
	Т	9.1 ^(b)	18.0 ^(d)		
	11	1.59 ^(a)	-6.4 ^(c)	-13.2	8.25
	П	8.08 ^(b)	-16.0 ^(d)		

a) at 293–573 K, b) at 573–873 K, c) at 298–423 K, d) at 423–873 K

SELLMEIER EQUATIONS FOR CALCULATION OF INDICES OF REFRACTION

Crystal		Α	В	С	D	E	F	Expression
ZnGeP ₂	n _o	8.0409	1.68625	1.68625	$n^2 = A + B\lambda^2/(\lambda^2 - C) + D\lambda^2/(\lambda^2 - E)$			
ZIIGeP ₂	n _e	8.0929	1.8649	0.41468	0.84052	$34052 452.05 - 12 = A + B \lambda^2 / (\lambda^2 - C)$	$\Pi^{2} = A + B \Lambda^{2} / (\Lambda^{2} - C) + D \Lambda^{2} / (\Lambda^{2} - C)$	
4-0-0-	n _o	6.8507	0.4297	0.15840	0.00125	-	_	$n^2 = A + B / (\lambda^2 - C) - D\lambda^2$
AgGaSe ₂	AgGaSe ₂	6.6792	0.4598	0.21220	0.00126	-	-	$U_{5} = V + R / (V_{5} - C) - DV_{5}$
A=C=S	n _o	3.3970	2.3982	0.09311	2.1640	950.0	-	$n^2 = A + B / (1 - C / \lambda^2) + D / (1 - E / \lambda^2)$
AgGaS₂ n _e	3.5873	1.9533	0.11066	2.3391	1030.7	-	II- = A + B / (I - C / \(- \) + D / (I - E / \(- \))	
GaSe n_o	7.443	0.405	0.0186	0.0061	3.1485	2194	$n^2 = A + B/\lambda^2 + C/\lambda^4 + D/\lambda^6 + E/(1 - F/\lambda^2)$	
	n _e	5.76	0.3879	-0.2288	0.1223	1.855	1780	$\Pi^2 = A + B/\Lambda^2 + C/\Lambda^4 + D/\Lambda^6 + E/(1 - F/\Lambda^2)$

BBO · LBO · KDP LilO₃ • AgGaS₂ • GaSe

ULTRATHIN NONLINEAR CRYSTALS

Thin crystals are used in different applications with femtosecond pulses:

- Harmonic generation (SHG, SFG)
- Optical parametric generation and amplification (OPG, OPA)
- Difference frequency generation (DFG)
- Pulse width measurements by auto and cross correlation
- THz frequency generation (in GaSe crystal)

The propagation of a ultrashort optical pulses through the crystal results in a delay of the pulses because of Group Velocities Mismatch (GVM), a duration broadening because of Group Delay Dispersion (GDD) and a frequency chirp.

Unfortunately those effects forces to limit nonlinear crystal thickness in frequency generation schemes.

For two collinearly propagating pulses with different group velocities their quasistatic interaction length (Las) is defined as distance over which they separate by a path equal to the one of the pulses duration (or to the desired pulse duration):

$$L_{qs} = \tau/GVM$$
;

where GVM is the group velocity mismatch and τ is the duration of the pulse. GVM calculations are presented for the most popular Type 1 phase matching applications for different crystals in Table 2.

Optimal BBO, LBO, KDP and LilO₃ crystal thicknesses which are limited by GVM for Type 1 SHG of 800 nm at different fundamental pulse duration are presented in the Table 3. Also effective coefficients and phase matching angles at room temperature (20°C) are calculated. If longer crystal will be used this will cause second harmonic pulse broadening to the duration longer than fundamental pulse duration (or desired pulse duration).

Group delay dispersion (GDD) has an important impact on the propagation of pulses, because a pulse always has certain spectral width, so that dispersion will cause its frequency components to propagate with different velocities. In case of crystals where we have normal dispersion when refractive index decreases with increasing wavelength this leads to a lower group velocity of higher-frequency components, and thus to a positive chirp. The frequency dependence of the group velocity also has an influence on the pulse duration. If the pulse is initially unchirped, dispersion in a crystal will always increase its duration. This is called dispersive pulse broadening. For an originally unchirped Gaussian pulse with the duration τ_0 , the pulse duration is increased according to:

$$t = \tau_0 \sqrt{1 + \left(\frac{4 \ln 2 \cdot D \cdot L}{\tau_0^2}\right)^2}$$

L - thickness of the crystal in mm. D - second order group delay dispersion or dispersion parameter. Table 1 gives D parameter for Type 1 phase matching SHG @ 800 nm for 800 nm pulse with "o" polarization and 400 nm pulse with "e" polarization in different crystals.

Table 1. D parameter for Type 1 SHG @ 800 nm orientation crystals for 800 nm (o-pol) and 400 nm (e-pol) pulses

Crystal	D at 800 nm	D at 400 nm
BBO	75 fsec ² /mm	196 fsec ² /mm
LBO	47 fsec ² /mm	128 fsec ² /mm
KDP	27 fsec ² /mm	107 fsec ² /mm
LiIO ₃	196 fsec ² /mm	589 fsec ² /mm

We may calculate that spectrum limited initial 30 fsec Gaussian pulse at 400 nm will be broadened to 35 fsec pulse after passing 1 mm thickness BBO crystal.

Table 2. Group velocity mismatch between shortest and longest wave pulse for Type 1 phase matching

Crystal	SFM 800+266 nm	SFM 800+400 nm	SHG 800 nm	SHG 1030 nm	SHG 1064 nm	DFG 1.26-2.18→ 3 μm	DFG 1.48-1.74→ 10 μm
BBO	2074 fs/mm	737 fs/mm	194 fs/mm	94 fs/mm	85 fs/mm	_	-
LBO	_	448 fs/mm	123 fs/mm	51 fs/mm	44 fs/mm	-	-
KDP	-	370 fs/mm	77 fs/mm	1 fs/mm	-7 fs/mm	_	_
LiIO3	-	-	559 fs/mm	285 fs/mm	262 fs/mm	-	-
AgGaS ₂	-	-	-	-	_	170 fs/mm	-10 fs/mm

Table 3. Quasistatic interaction length for Type 1 SHG of 800 nm

Ownerful	000 f-	400 5-	FO fo	00 f-	40.5-	0.4	0
Crystal	200 fs	100 fs	50 fs	20 fs	10 fs	Cut angles θ, φ	Coefficient deff
BBO	1.0 mm	0.5 mm	0.26 mm	0.1 mm	0.05 mm	29.2°, 90°	2.00 pm/V
LBO	1.6 mm	0.8 mm	0.4 mm	0.16 mm	0.08 mm	90°, 31.7°	0.75 pm/V
KDP	2.6 mm	1.3 mm	0.6 mm	0.26 mm	0.13 mm	44.9°, 45°	0.30 pm/V
LilO	0.4 mm	0.18 mm	0.01 mm	0.04 mm	0.018 mm	42.5°. 0°	3.59 pm/V

Other Ultrahin BBO crystals available
Femt* Line see pages: 5.23; 5.30

Free standing crystals

The crystals of thickness down to 100 µm can be can be supplied as free standing crystals not attached to the support. However the ring mounts are highly recommended for safe handling of these thin crystals. The tolerance is

 $\pm 50~\mu m$ for crystals of thickness down to 300 μm and $\pm 20~\mu m$ for crystals of thickness down to 100 μm .

GaSe crystal is supplied glued in to dia Ø40 mm ring holder only.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness
BBO	5×5 mm	20×20 mm	0.1 mm
LBO	5×5 mm	30×30 mm	0.1 mm
KDP	4×4 mm	100×100 mm	0.1 mm*
LiIO ₃	4×4 mm	50×50 mm	0.1 mm*
AgGaS ₂	5×5 mm	15×15 mm	0.1 mm
GaSe	Ø5 mm	Ø7 mm	0.01 mm

 $^{^{\}star}$ the thickness should be about 0.5 mm for max aperture KDP and LiIO $_{3}$

Optically contacted crystals

BBO, LBO, KDP and LiIO $_3$ crystals of thickness less than 100 μ m can be supplied optically contacted on UV Fused Silica substrates sizes 10×10×2 mm or 12×12×2 mm. Other sizes of substrates

are also available on request. The tolerances of BBO and LBO crystal thickness are +10/-5 $\mu m,$ for KDP and LilO $_3$ ±10 $\mu m.$

Crystal	Minimal aperture	Maximal aperture	Minimal thickness
BBO	5×5 mm	10×10 mm	10±5 μm
LBO	5×5 mm	10×10 mm	20 μm
KDP	4×4 mm	10×10 mm	20 μm
LiIO ₃	5×5 mm	10×10 mm	20 µm

EKSMA OPTICS provides various AR, BBAR and protective coatings for all free standing crystals and optically contacted crystals.

Ring mounts made from anodized aluminium and teflon are available for safe and convenient handling of ultrathin crystals.

STANDARD SPECIFICATIONS OF CRYSTALS

Crystals	BBO, LBO	KDP, LilO ₃ , AgGaS ₂	GaSe
Flatness	λ/6 at 633 nm	λ/4 at 633 nm	cleaved
Parallelism	< 10 arcsec	< 30 arcsec	perpendicularly
Angle tolerance	< 15 arcmin	< 30 arcmin	to optical axis.
Surface quality	10/5 scratch/dig	20/10 scratch/dig	Polish is not available

Ring Holders for Nonlinear Crystals See page 2.27 for more information. Positioning Mount 840-0199 for Nonlinear Crystal Housing See page 2.29 for more information. See page 2.29 for more information.

Laser – Crystals

Nd:YAG

NEODYMIUM DOPED YTTRIUM ALUMINIUM GARNET

Nd:YAG crystal is the most popular lasing media for solid-state lasers. EKSMA OPTICS offers standard specifications high optical quality Nd:YAG rods with high damage threshold AR @ 1064 nm coatings.

Please contact EKSMA OPTICS for further information or non-standard specifications.

PROPERTIES OF 1.0% Nd:YAG AT 25°C

Formula	Y _{2.97} Nd _{0.03} Al ₅ O ₁₂
Crystal structure	Cubic
Density	4.55 g/cm ³
Melting point	1970 °C
Mohs hardness	8.5
Transition	⁴ F _{3/2} → ⁴ I _{11/2} @ 1064 nm
Fluorescence lifetime	230 µs for 1064 nm
Thermal conductivity	0.14 Wcm ⁻¹ K ⁻¹
Specific heat	0.59 Jg ⁻¹ K ⁻¹
Thermal expansion	6.9 × 10 ⁻⁶ °C ⁻¹
∂n/∂t	7.3 × 10 ⁻⁶ °C ⁻¹
Young's modulus	3.17 × 10 ⁴ Kg/mm ⁻²
Poisson ratio	0.25
Thermal shock resistance	790 Wm ⁻¹
Refractive index	1.818 @ 1064 nm

STANDARD RODS SIZES

Code	Diameter, mm	Length, mm	Doping, %	Wedge of the ends, deg	Price, EUR
E-Y-3-0.8-A/A	3	65	0.8	0/0	265
E-Y-3-1.1-A/A	3	65	1.1	0/0	325
E-Y-4-0.8-A/A	4	65	8.0	3/3 parallel	410
E-Y-4-1.1-A/A	4	65	1.1	3/3 parallel	410
E-Y-6.35-1.1-A/A	6.35	85*	1.1	3/3 parallel	875
E-Y-8-1.1-A/A	8	85*	1.1	3/3 parallel	1065
E-Y-10-1.1-A/A	10	85*	1.1	3/3 parallel	1695
E-Y-12-0.8-A/A	12	100*	8.0	3/3 parallel	2280
E-Y-12-1.1-A/A	12	100*	1.1	3/3 parallel	2280

^{*} rods with barrel grooving, except 10 mm at both ends of the rod without grooving.

SPECIFICATIONS OF STANDARD Nd:YAG LASER RODS

Nd Doping Level	0.8% or 1.1%	
Orientation	<111> crystalline direction	
Surface Quality	10-5 scratch/dig as per MIL-O-13830A	
Surface Flatness	λ/10 at 633 nm	
Parallelism	< 10 arcsec	
Perpendicularity	< 5 arcmin for plano/plano ends	
Diameter Tolerance	+0/-0.05 mm	
Length Tolerance	+1/-0.5 mm	
Clear Aperture	> 90 % of full aperture	
Chamfers	0.1 mm at 45 deg	
Coating	both sides coated AR @ 1064 nm, R < 0.2%, AOI = 0 deg	
Barrel grooving	all dia 6.35, 8, 10, 12 mm rods with barrel grooving	

RELATED PRODUCTS

 Laser Safety Eyewear See page 1.36 for more information.

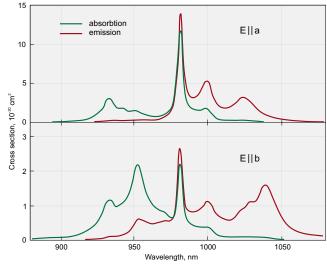
Yb:KGW • Yb:KYW

Yb-DOPED POTASSIUM GADOLINIUM TUNGSTATE

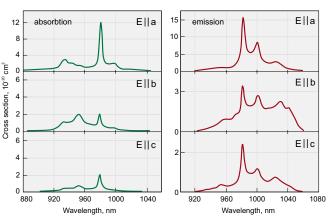
APPLICATIONS

- Yb:KGW and Yb:KYW thin
 (100–150 µm) crystals are used as lasing materials to generate ultrashort (hundreds of fsec) high power
 (>22 W) pulses. Standard pumping @ 981 nm, output: 1023–1060 nm
- Yb:KGW and Yb:KYW can be used as ultrashort pulses amplifiers
- Yb:KGW and Yb:KYW are some of the best materials for high power thin disk lasers

CUSTOM MANUFACTURING CAPABILITIES


- Various shapes (slabs, rods, cubes)
- Different dopant levels
- Diversified coatings

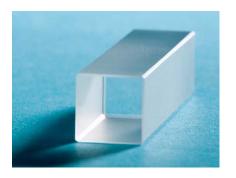
PROPERTIES OF Yb:KGW AND Yb:KYW


Name	Yb:KGW	Yb:KYW
Yb3+ concentration	0.5–5%	0.5–100%
Crystal structure	monoclinic	monoclinic
Point group	C2/c	C2/c
Lattice parameters	a=8.095 Å, b=10.43 Å, c=7.588 Å, β=94.43°	a=8.05 Å, b=10.35 Å, c=7.54 Å, β=94°
Thermal expansion	α_a =4×10 ⁻⁶ /°C, α_b =3.6×10 ⁻⁶ /°C, α_c =8.5×10	_
Thermal conductivity	K_a =2.6 W/mK, K_b =3.8 W/mK, K_c =3.4 W/mK	_
Density	7.27 g/cm ³	6.61 g/cm ³
Mohs' hardness	4–5	4–5
Melting temperature	1075 °C	_
Transmission range	0.35–5.5 μm	0.35–5.5 μm
Refractive indices (λ=1.06 μm)	n_g =2.037, n_p =1.986, n_m =2.033	_
∂n/∂t	0.4×10 ⁻⁶ K ⁻¹	0.4×10 ⁻⁶ K ⁻¹
Laser wavelength	1023–1060 nm	1025–1058 nm
Fluorescence lifetime	0.3 ms	0.3 ms
Stimulated emission cross section ($\mathbf{E} \parallel \mathbf{a}$)	2.6×10 ⁻²⁰ cm ²	3×10 ⁻²⁰ cm ²
Absorption peak and bandwidth	α_a =26 cm ⁻¹ , λ =981 nm, $\Delta\lambda$ =3.7 nm	α_a =40 cm ⁻¹ , λ =981 nm, $\Delta\lambda$ =3.5 nm
Absorption cross section	1.2×10 ⁻¹⁹ cm ²	1.33×10 ⁻¹⁹ cm ²
Lasing threshold	35 mW	70 mW
Stark levels energy (in cm ⁻¹) of the ${}^2F_{5/2}$ manifolds of Yb ³⁺ @ 77K	10682, 10471, 10188	10695, 10476, 10187
Stark levels energy (in cm ⁻¹) of the ² F _{7/2} manifolds of Yb ³⁺ @ 77K	535, 385, 163, 0	568, 407, 169, 0

- high absorption coefficient @ 981 nm
- high stimulated emission cross section
- low laser threshold
- extremely low quantum defect $\lambda_{pump}/\lambda_{se}$
- broad polarized output at 1023–1060 nm
- high slope efficiency with diode pumping (~ 60%)
- high Yb doping concentration

Yb-Doped Potassium Gadolinium Tungstate (Yb:KGd(WO₄)₂) and Yb-doped Potassium Itrium Tungstate (Yb:KY(WO₄)₂) single crystals are the laser crystals for diode or laser pumped solid-state laser applications.

Absorption and emission spectra of Yb(5%):KYW



Absorption and emission spectrae of Yb(5%):KGW

Nd:KGW

Nd-DOPED POTASSIUM GADOLINIUM TUNGSTATE

The efficiency of Nd:KGW lasers is 3–5 times higher than the one of Nd:YAG lasers. Nd:KGW laser medium is one of the best choices ensuring effective laser generation at low pump energies (0.5 – 1 J). These crystals supplied by EKSMA OPTICS feature high optical quality and great value of bulk resistans for laser radiation.

PHYSICAL AND LASER PROPERTIES

Chemical formula	KGd(WO ₄):Nd	
Lattice constants	a = 8.095 Å, b = 10 Å, c = 7.588 Å	
Optical orientation	$n_g = b, n_p c = 20 deg$	
Angle between optical axis	86.5 angular grad	
Density	7.27 g/cm ³	
Mohs hardness	5	
Thermal conductivity	2.8 W/(m×grad) [100] 2.2 W/(m×grad) [010] 3.5 W/(m×grad) [001]	
Thermal expansion	4×10 ⁻⁶ grad ⁻¹ [100] 3.6×10 ⁻⁶ grad ⁻¹ [010] 8.5×10 ⁻⁶ grad ⁻¹ [001]	
Phase transition	1005 °C	
Melting point	1075 °C	
Transmission range	0.35–5.5 μm	
Refractive index	n_g = 2.033 @ 1.067 µm n_p = 1.937 @ 1.067 µm n_m = 1.986 @ 1.067 µm	
Transition	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$	
Laser wavelength	1.0672 μm	
Fluorescence lifetime	120 µs	
Fluorescent width	24 cm ⁻¹	
Emission cross-section	4.3×10 ⁻¹⁹ cm ⁻²	
Emission temperature drift	8.5×10 ⁻⁴ nm, K ⁻¹	

Nd:KGW crystals are low lasing threshold, highly efficient laser material exceptionally suitable for laser rangefinding applications.

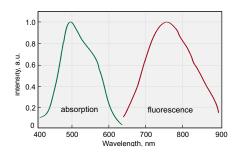
STANDARD SPECIFICATIONS

Orientation	[010] ±30 min
Dopant concentration	2-10 at %
Diameter tolerance	+0.0/-0.1 mm
Length tolerance	+1.0/-0.0 mm
Chamfer	45(±10) deg × 0.2(±0.1) mm
Flatness	λ/10 @ 633 nm
Parallelism	better than 30 arcsec
Perpendicularity	better than 15 arcmin
Surface finishing	10/5 scratch/dig
Absorption losses	< 0.005 cm ⁻¹

Ti:Sapphire

TITANIUM DOPED SAPPHIRE

 Al_2O_3 : Ti^{3+} – titanium-doped sapphire crystals combine outstanding physical and optical properties with broadest lasing range.


Al₂O₃:Ti³⁺ indefinitely long stability and useful lifetime added to the lasing over entire band of 660 – 1050 nm challenge "dirty" dyes in variety of applications. Medical laser systems, lidars, laser spectroscopy, direct femtosecond pulse generation by Kerr-type mode-locking – there are few of existing and potential applications.

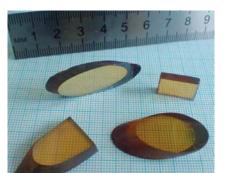
Ti ₂ O ₃ wt %	a, cm ⁻¹ @ 490 nm	a, cm ⁻¹ @ 514 nm	a, cm ⁻¹ @ 532 nm
0.03	0.7*	0.6	0.5
0.05	1.1	0.9	0.8
0.07	1.5	1.3	1.2
0.10	2.2	1.9	1.7
0.12	2.6	2.2	2.0
0.15	3.3	2.8	2.5
0.20	4.3	3.7	3.4
0.25	5.4	4.6	4.1

^{*} Presented values are given with ±0.05 cm⁻¹ accuracy.

The absorption band of Ti:Sapphire centered at 490 nm makes it suitable for variety of laser pump sources – argon ion, frequency doubled Nd:YAG and YLF, copper vapour lasers. Because of 3.2 µs fluorescence lifetime Ti:Sapphire crystals can be effectively pumped by short pulse

flashlamps in powerful laser systems.

STANDARD SPECIFICATIONS

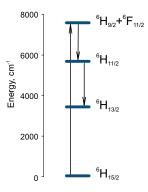

Orientation	optical axis C normal to rod axis
Ti ₂ O ₃ concentration	0.03–0.25 wt %
Figure Of Merit	>150 (>300 available on special requests)
Size	up to 20 mm dia and up to 130 mm length
End configurations	flat/flat or Brewster/Brewster ends
Flatness	λ/10 @ 633 nm
Parallelism	10 arcsec
Surface finishing	10/5 scratch/dig
Wavefront distortion	λ/4 inch

PHYSICAL AND LASER PROPERTIES

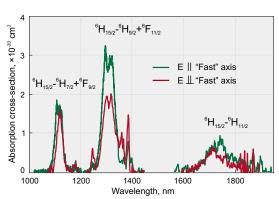
57
×cm)
K)
K)

EKSMA OPTICS

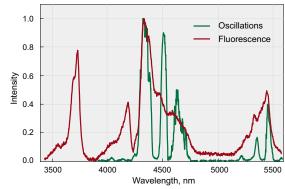
Dy³⁺:PbGa₂S₄


EKSMA OPTICS offers novel unique crystal – lead thiogallate (PbGa $_2$ S $_4$) with dysprosium ions (Dy $^{3+}$) co-doped by alkali metals.

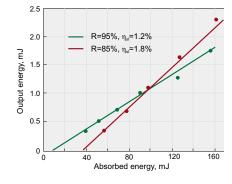
Crystal shows efficient laser emission at room temperature in mid IR range at 4.3-5.5 micron wavelengths.

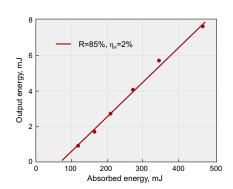

LEAD THIOGALLATE WITH DYSPROSIUM IONS CO-DOPED BY ALKALI METALS

PHYSICAL PROPERTIES

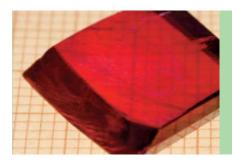

Transmission range	0.44-12 microns	
Dy ³⁺ concentration in crystal	0.5 mol. %	
Non hygroscopic		

Energy diagram of Dy3+ ion

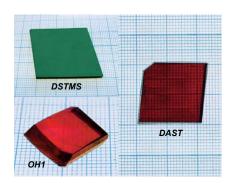

Polarized absorption cross-section spectrum of Dy³+ ions in PbGa $_2$ S $_4$ crystal



Emission cross-section and oscillation spectrum of Dy $^{3+}$ ions in PbGa $_2$ S $_4$ crystal

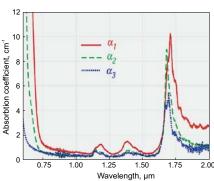

LASING PROPERTIES WITH FREE RUNNING 1.318 µm Nd:YAG LASER PUMP

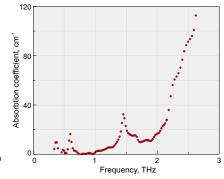
Obtained oscillation wavelengths:	4.3 μm; 4.53 μm; 4.65 μm, 5.5 μm
Absorption at pump	~ 1 cm ⁻¹
Cross-section at 4.3 mm	1×10 ⁻²⁰ cm ²
Lasing threshold	< 20 mJ
Lasing pulse duration	< 1 ms
Laser efficiency	up to 2%



Terahertz Crystals

DSTMS • DAST • OH1 ORGANIC TERAHERTZ CRYSTALS

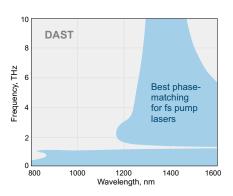

EKSMA OPTICS offers organic DSTMS, DAST, OH1 crystals for THz generation and detection using different femtosecond laser pump sources.

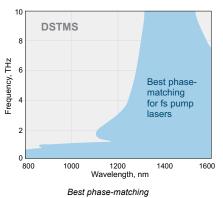

ORGANIC TERAHERTZ GENERATORS AND DETECTORS:

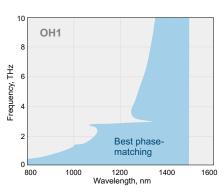
- DSTMS efficient terahertz generation in 0.3-15 THz range
- DAST efficient terahertz generation in 0.1-17 THz range
- OH1 efficient terahertz generation in 0.1-3 THz range

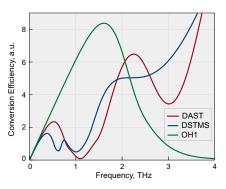
APPLICATIONS OF ORGANIC DSTMS, DAST AND OH1 CRYSTALS:

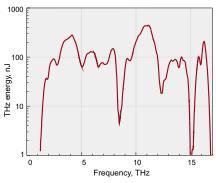
- Efficient THz generation and detection
- Fast electro-optic modulation (>200 GHz)
- Optical parametric generation
- Efficient doubling of 1.55 microns radiation




Absorption Spectrum of DSTMS, DAST THz crystals


Absorption Spectrum of OH1 crystals


PHYSICAL PROPERTIES OF ORGANIC TERAHERTZ CRYSTALS


Crystal	DSTMS	DAST	OH1
Point group symmetry	m	m	mm2
Melting temperature, °C	250	256	212
Refractive indices	n ₁ = 2.07 @ 1550 nm n ₂ = 1.64 @ 1550 nm	$n_1 = 2.519 @ 720 \text{ nm}$ $n_2 = 1.720 @ 720 \text{ nm}$ $n_3 = 1.635 @ 720 \text{ nm}$	$n_2 = 1.58 @ 1319 nm$ $n_3 = 2.15 @ 1319 nm$
Nonlinear optical coefficients	$d_{111} = 214\pm20 \text{ pm/V} @ 1990 \text{ nm}$ $d_{122} = 31\pm4 \text{ pm/V} @ 1990 \text{ nm}$ $d_{212} = 35\pm4 \text{ pm/V} @ 1990 \text{ nm}$	$d_{11} = 1010 \text{ pm/V} @ 1318 \text{ nm}$ $d_{11} = 290 \text{ pm/V} @ 1542 \text{ nm}$ $d_{26} = 39 \text{ pm/V} @ 1542 \text{ nm}$	d ₃₃₃ = 120±10 pm/V @ 1990 nm d ₂₂₃ = 13±2 pm/V @ 1990 nm d ₃₂₂ = 8.5±2 pm/V @ 1990 nm
Electro-optic coefficients	r ₁₁₁ = 37±3 pm/V @ 1990 nm	r_{11} = 92 pm/V @ 720 nm r_{11} = 53 pm/V @ 1313 nm r_{11} = 47 pm/V @ 1535 nm	$r_{333} = 109\pm4 \text{ pm/V} @ 633 \text{ nm}$ $r_{333} = 75\pm7 \text{ pm/V} @ 785 \text{ nm}$ $r_{333} = 56\pm2 \text{ pm/V} @ 1064 \text{ nm}$ $r_{333} = 52\pm7 \text{ pm/V} @ 1319 \text{ nm}$

THz Conversion Efficiency in DAST, DSTMS and OH1 crystals

THz generation in DAST

ORGANIC TERAHERTZ CRYSTALS

Catalogue number	number Description		
DSTMS THz Crystals for fsec lasers pump. Diagonal cut.			
DSTMS-150	C-plates, with diagonal cut. Thickness 150-200 microns		
DSTMS-200	C-plates, with diagonal cut. Thickness 200-400 microns		
DSTMS-400	C-plates, with diagonal cut. Thickness 400-800 microns		
DSTMS THz crystals for fsec lasers pu	DSTMS THz crystals for fsec lasers pump. Perpendicular cut.		
DSTMS-500	With perpendicular cut, 3×4 mm aperture. Thickness – 500 microns to 1 mm		
DAST THz Crystals for fsec lasers pump. Diagonal cut.			
DAST-150	C-plates, with diagonal cut. Thickness 150-200 microns		
DAST-200	C-plates, with diagonal cut. Thickness 200-400 microns		
DAST-400	C-plates, with diagonal cut. Thickness 400-800 microns		
DAST THz crystals for fsec lasers pump. Perpendicular cut.			
DAST-500 With perpendicular cut, 3×4 mm aperture. Thickness – 500 microns to 1 mm			
OH1 THz Crystals for fsec lasers pump. Diagonal cut.			
OH1-150	C-plates, with diagonal cut. Thickness 150-200 microns		
OH1-200	C-plates, with diagonal cut. Thickness 200-400 microns		
OH1-400	C-plates, with diagonal cut. Thickness 400-800 microns		

GaSe • ZnTe

SEMICONDUCTOR TERAHERTZ CRYSTALS

ZnTe

ZnTe (Zinc Telluride) crystals with <110> orientation are used for THz generation by optical rectification process. Optical rectification is a difference frequency generation in media with large second order susceptibility. For femtosecond laser pulses which have large bandwidth the frequency components interact with each other and their difference produce bandwidth from 0 to several THz. Detection of the THz pulse occurs via freespace electro-optic detection in another <110> oriented ZnTe crystal. The THz pulse and the visible pulse are propagated collinearly through the ZnTe crystal. The THz pulse induces a birefringence in ZnTe crystal which is read out by a linearly polarized visible pulse. When both the visible pulse and the THz pulse are in the crystal at the same time, the visible polarization will be rotated by the THz pulse. Using a $\lambda/4$ waveplate and a beamsplitting polarizer together with a set of balanced photodiodes, it is possible to map THz pulse amplitude by monitoring the visible pulse polarization rotation after the ZnTe crystal at a variety of delay times with respect to the THz pulse. The ability to read out the full electric field, both amplitude and delay, is one of the attractive features of time-domain THz spectroscopy.

ZnTe are also used for IR optical components substrates and vacuum deposition.

NOTE: ZnTe crystal contains micro bubbles and they are visible in projection of illuminated crystal. However this does not affect the THz generation. We do not accept

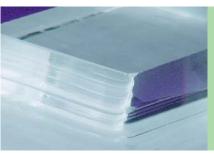
complains on presence of bubbles in crystal.

ZnTe, <110> CUT

Catalogue number	Size, mm	Thickness, mm
ZnTe-200	10×10	0.2
ZnTe-500	10×10	0.5
ZnTe-1000	10×10	1.0

GaSe

GaSe (Gallium Selenide) crystals used for THz generation shows a large bandwidth of up to 41 THz. GaSe is a negative uniaxial layered semiconductor with a hexagonal structure of 62 m point group and a direct bandgap of 2.2 eV at 300 K. GaSe crystal features high damage threshold, large nonlinear optical coefficient (54 pm/V), suitable transparent range, and low absorption coefficient, which make it an alternative solution for broadband mid infrared electromagnetic waves generation. Due to broadband THz


generation and detection using a sub-20 fs laser source, GaSe emitter-detector system performance is considered to achieve comparable or even better results than using thin ZnTe crystals. In order to achieve frequency selective THz wave generation and detection system, GaSe crystals of appropriate thickness should be used.

NOTE: because of material structure it is possible to cleave GaSe crystal along (001) plane only. Another disadvantage is softness and fragility of GaSe.

GaSe, Z-CUT

Catalogue number	Clear aperture, mm	Thickness, µm
GaSe-30	Ø7	30
GaSe-100	Ø7	100
GaSe-1000	Ø7	1000

Raman Crystals

KGW • Ba(NO₃)₂

CRYSTALS FOR STIMULATED RAMAN SCATTERING

EKSMA OPTICS offers crystalline materials – Barium Nitrate – Ba(NO_3)₂ and undoped potassium gadolinium tungstate KGd(VO_4)₂ or KGW which have attracted much interest for stimulated Raman scattering (SRS). These materials can be used for frequency conversion in lasers for extending the tuning range. SRS in crystals is compatible with current all-solid-state technology and provides a very simple, compact means of frequency conversion.

Ba(NO₃)₂ has a highest Raman gain co-

efficient. The gain coefficient affects the threshold for Raman laser. However, the thermal lensing is particularly strong in this material. This is indicated by the large value $\partial n/\partial T$ and low thermal conductivity. Thermal effects are significantly smaller in KGW. This along with the high damage threshold make the crystal an excellent candidate for power scaling.

Comparing $Ba(NO_3)_2$ and KGW for Raman application $Ba(NO_3)_2$ is more optimal in case of ns and longer pulses, KGW – in case of shorter pulses.

Ba(NO₃)₂ PHYSICAL AND OPTICAL PROPERTIES

cubic, P2 ₁ 3
0.35–1.8 μm
3.25 g/cm ³
2.5–3
n = 1.555
1048 cm ⁻¹
11 cm/GW
1.17
-20×10 ⁻⁶ K ⁻¹
~ 0.4 GW/cm ²

KGW PHYSICAL AND OPTICAL PROPERTIES

Crystal symmetry	monoclinic, C2/c
Transmission range	0.35–5.5 μm
Density	7.27 g/cm ³
Hardness Mohs	4-5
Refractive indices @ 1064 nm	$n_g = 2.061$; $n_m = 2.010$; $n_p = 1.982$
Raman shift	901 cm ⁻¹ (p[mm]p)
	768 cm ⁻¹ (p[gg]p)
Raman gain, pump 1064 nm	3.3 cm/GW (901 cm ⁻¹)
	4.4 cm/GW (768 cm ⁻¹)
Thermal conductivity, W/mK	$K_a=2.6$; $K_b=3.8$; $K_c=3.4$
∂n/∂T	$0.4 \times 10^{-6} \text{ K}^{-1}$
Optical Damage Threshold	> 10 GW/cm ²

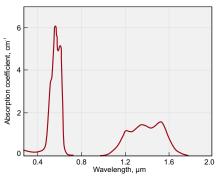
Raman wavelengths in KGW crystal (oscillation coefficient 901.5 cm $^{-1}$) and Ba(NO₃)₂ crystal (oscillation coefficient 1048.6 cm $^{-1}$) are given in the table below.

Stokes	KGW pumped @ 532 nm	KGW pumped @ 1064 nm	Ba(NO ₃) ₂ pumped @ 532 nm	Ba(NO ₃) ₂ pumped @ 1064 nm	Typical efficiency, %
1 Stoke	558	1177	563	1197	35–70
2 Stoke	588	1316	598	1369	20–40
3 Stoke	621	1494	638	1599	10–15
4 Stoke	658	1726	684	1924	<10
1 Antistoke	507	970	503	957	10–30

STANDARD SPECIFICATIONS

	Ba(NO ₃) ₂	KGW
Surface quality, scr/dig	40/20	10/5
Flatness @ 633 nm	λ/4	λ/8
Maximal element dimensions, mm	10×10×100	10×10×80

Co²⁺:MgAl₂O₄ Cr⁴⁺:YAG


PASSIVE Q-SWITCHING CRYSTALS

EKSMA OPTICS offers a wide choice of solid-state saturable absorbers such as: Co²⁺:MgAl₂O₄, Cr⁴⁺:YAG.

Co²⁺:MgAl₂O₄ is a relatively new material for passive Q-switching in lasers emitting from 1.2 to 1.6 μm, in particular, for eye-safe 1.54 μm Er:glass laser, but also works at 1.44 μm and 1.34 μm wavelengths. High absorption cross section (3.5×10⁻¹⁹ cm²) permits Q-switching of Er:glass laser without intracavity focusing both with flash-lamp and diode-laser pumping. Negligible excited-state absorption results in high contrast of Q-switch, i.e.

the ratio of initial (small signal) to saturated absorption is higher than 10 (Fig. 1).

Cr⁴⁺:**YAG** is one of the best passive Q-switch for high power lasers emitting at ~1 μm wavelength. Standard diameter apertures – 5, 8, 9.5 mm and various initial transmission (or optical density) are available upon request. Also Cr⁴⁺:YAG laser rods for ultra-short pulse solid-state lasers are available.

Fig. 1. Absorption spectra of the Co^{2+} : $MgAl_2O_4$ crystal

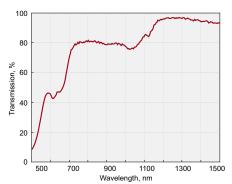


Fig. 2. Transmission of AR coated at 1064 nm Cr:YAG Q-switch with initial transmission of 80% at 1064 nm

SPECIFICATIONS

	Co:MgAl₂O₄	Cr4+:YAG
Working wavelength range, µm	1.2 – 1.6	0.8 – 1.2
Absorption cross-section, cm ²	3.5×10 ⁻¹⁹ (at 1.54 μm)	5×10 ⁻¹⁸ (at 1.06 µm)
Initial transmittance, %	30–99	20–99
Aperture, mm	5–12	5, 8, 9.5
Thickness, mm	1–5	1–5
Coatings*	AR @ 1.54 µm, R<0.2%	AR @ 1.06 µm, R<0.15%

Fe:ZnSe, Cr:ZnSe, Co:ZnS solid-state saturable absorbers also are available upon request

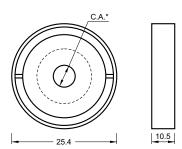
Positioners & Holders

830-0001

RING HOLDERS FOR NONLINEAR CRYSTALS

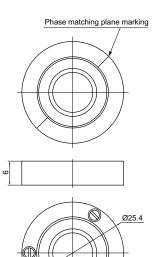
830-0001-10

830-0001-06


- Black anodized aluminium body
- Teflon or white anodized aluminium adapter for particular crystal size
- Easy assembling and disassembling

Ring mounts made from black anodized aluminum and Teflon or white anodized aluminium adapter are available for safe and convenient handling of nonlinear crystals. The crystals are glued into white anodized aluminium adapter (830-0001-06). No glue is used for fixation of the crystal into open ring holder with teflon adapter. The standard sizes are $\emptyset 25.4$ or $\emptyset 30$ mm and thickness -6, 10.5, 13.5 or 17.5 mm depending on crystal size.

Please indicate the exact crystal size when ordering.


Part No	Diameter, mm	Thickness, mm	Max. acceptable crystal size, mm	Price, EUR
830-0001-06	25.4	6	12×12×0.5	50
830-0001-10	25.4	10.5	12×12×3	50
830-0001-13	25.4	13.5	12×12×6	50
830-0001-17	25.4	17.5	12×12×15	90
830-0002-10	30	10.5	15×15×3	50
830-0002-13	30	13.5	15×15×6	50
830-0002-17	30	17.5	15×15×15	90

Delivery: 2-3 weeks ARO

* C.A. - depends on crystal aperture

830-0001-10

830-0001-06

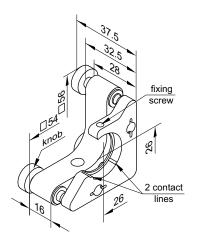
HOUSING ACCESSORIES

 Positioning Mount 840-0199 for Nonlinear Crystal Housing
 See page 2.29

See page 2.29 for more information

840-0056-11

POSITIONING MOUNT

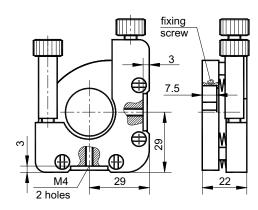

- Tilt range 9°
- Travel range 4 mm
- Mounting on either of 2 sides
- Sensitivity of 3 arcsec and 1 μm
- Kinematic with clear edge design
- A screw pushes via seat of hardened stainless steel

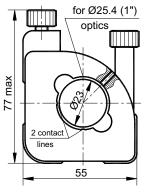
Kinematic Mount 840-0056-11 is used for precise angular and linear alignment of 1" ring holders with nonlinear crystals.

Mount has a resting flange to stop the holder. One fixing screw secures the optics against 2 contact lines, which make 2 contact points. To prevent damage to the holder, the tip of the fixing screw is made of plastic.

Platform of 840-0056-11 is preloaded by two strong coil springs, ensuring tight kinematic fit. A thick base of the mount adds stability. This allowed to eliminate part of the mount, keeping clear one edge. As standard, mount 840-0056-11 comes with the screws 870-0080.

Code	Price, EUR
840-0056-11	75


• Motorized version 940-0060-01 See page 8.139 for more information.


840-0193

KINEMATIC POSITIONING MOUNT

- For Ø25.4 mm (1 inch) ring holders
- Kinematic design
- Tilt/tip range ±2°
- Sensitivity 3 arcsec
- Both tilt and tip controlled from aside the optical path
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws

Code	Weight, kg	Price, EUR
840-0193	0.12	87

840-0199

POSITIONING MOUNT FOR **NONLINEAR CRYSTAL HOUSING**

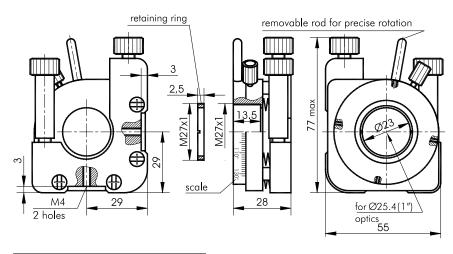
Accepts Ø25.4 mm and up to 10.5 mm thickness ring housings

- Kinematic design
- Wedge and ball drive mechanism
- Tilt/tip range: ±2°
- Sensitivity: 3 arcsec
- Fine adjustment screws with 0.25 mm pitch
- Hardened seats under adjustment screws
- Rotation range: 360° Scale gradation: 2°
- Compact and robust design
- Material: black anodized aluminum

This kinematic mount accepts crystal housings of Ø25.4 mm and thickness up to 10.5 mm. The housing is stopped by a rest-flange inside the central aperture of the platform, and is secured by a threaded retaining ring.

The rotation position (X axis) is indicated on 360° angular scale with a gradation of 2°. The rotation platform has a removable rod

that allows continuous 360° rotation without obscuring the aperture. This removable rod can be fitted into any of the four holes on the perimeter of rotation platform.


Angular adjustment range of tilt/tip (Z, Y axes) is ±2.5°. Two high resolution stainless steel vertical-drive screws with a pitch of 0.25 mm and "wedge and ball" mechanism ensure smooth and precise angular tilt/tip adjustment with 3 arc sec sensitivity. For tilting, the platform it is preloaded against the base with high quality springs.

Large knobs on the adjusting screws relieve the strain on operator fingers during adjustment.

Both screws protrude from the top allowing convenient adjustment outside the laser beam path and providing easy access for adjustments in densely packed optical set-ups.

An extra M4 tapped hole on the side of the base allows you to operate the mount as a side-drive adjustment control mount. The mount is made of black anodized aluminium to help minimize reflections.

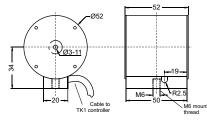
A retaining ring M27×1, two Teflon rings and a tightening key to fix the crystal ring housing is included.

Code	Weight, kg	Price, EUR
840-0199	0.12	165

Crystal Ovens

Many of widely used nonlinear crystals are susceptible to ambient humidity, for example KD*P, BBO, LBO. Protective coatings applied to the surface can reduce degradation to some extent only. To improve the protection of surfaces of the crystals from the degradation it is desirable to keep the crystals at higher than ambient

temperature, which helps avoid condensation on the crystal surfaces.


In addition, if the crystal is used for harmonics generation, the phase-matching angle depends on crystal temperature. For example, the output power of second harmonics generator based on KD*P crystal can decrease by 50 % if the crystal tem-

perature changes just by one degree, hence for good laser stability precise crystal temperature stabilization is necessary. EKSMA OPTICS offers various solutions for precise crystal heating. CH series crystal ovens provide reliable, stable performance and can accommodate wide range of crystals.

TC1 • CO1

TEMPERATURE CONTROLLER TC1 WITH OVEN CO1

TC1 and CO1 dimensions

TC1 and CO1 is high temperature set (up to 200 °C) consisting of thermocontroller TC1 and crystal oven CO1. TC1 has two independent outputs and can control two CO1 ovens simultaneously. Trough RS232 computer interface it can be controlled from PC. Actual crystal temperature is shown on LED display.

The nonlinear crystal is mounted into adapter before insertion into oven CO1. Such design facilitates handling and replacement of the crystal. The nonlinear crystal can be sealed with fused silica windows in order to provide extra protection. The standard adapters are 15, 30 and 50 mm length with apertures of 3×3 , 4×4 , 5×5 , 6×6 mm size. Customized adapters for crystals up to 12×12 mm size are available. In addition, adapters for Brewster-cut and PPLN crystals are available too.

SPECIFICATIONS

Model	TC1+CO1-30	TC1+CO1-50
Quantity of ovens possible to connect to one controller TC1	2	1
Temperature tuning range	RT – 2	200 °C
Maximum crystals dimensions	12×12×30 mm	12×12×50 mm
Sealing (optional)	FS windows	
Accuracy	± 0.5 °C	
Long-term stability	± 0.1 °C	
Resolution	0.1 °C	
Powering requirements	90-264 V, 47-66 Hz	
Power consumption	45 W	
Sensor type	PT1000	
Output connector	DB9	
Serial interface	RS232 (DB 9)	
Dimensions, Dia×D	Ø52×52 mm	Ø52×72 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
Thermocontroller TC1		
TC1 The	rmocontroller, Fuzzy logic, RT-200 °C, can control two CO1 ovens, long-term stability ±0.1 °K, worldwide mains	556
Crystal Ovens for TC1		
For crystal length up to 30 mm		
CO1-30-y/y	Standard crystal sizes *	401
CO1-30-y/z	Custom crystal sizes	443
CO1-30S-y/y	Sealed, standard crystal sizes *	608
* Sizes 3x3 AxA 5x5 6x6 12x1	2 are standard ** v/v v/z _ crystal size	

^{*} Sizes 3×3, 4×4, 5×5, 6×6,12×12 are standard.

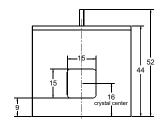
Code **	Description, features	Price, EUR
Crystal Ovens for TC1		
For crystal length up to 50 mm		
CO1-50-y/y	Standard crystal sizes *	495
CO1-50-y/z	Custom crystal size	505
CO1-50S-y/y	Sealed, standard crystal sizes *	-
For Brewster-angle cut crystal		
CO1-30BA-y/y	For Brewster-angle cut crystal	495
CO1-30BAS-y/y	Sealed, for Brewster-angle cut crystal	670
For PPLN crystals		
CO1-30PP-y/y	For PPLN crystals	464
Mounting accessories		
Crystal holders		
AD1	Spare crystal holder for CO1-30 oven	68
AD2	Spare crystal holder for CO1-50 oven	78
Mounting stages for crystals ovens		
MS-4	Adapter for CO1 oven mounting on tilt stage. Tilt stage should be ordered separately	46

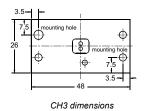
^{*} Sizes 3×3, 4×4, 5×5, 6×6,12×12 are standard.

CH3

OVEN FOR NONLINEAR CRYSTALS

On request we can manufacture ovens for crystals with aperture up to 60×60 mm or even larger.


CH3-15 is compact oven with build-in thermocontroller for temperature up to 60 °C. It is ideal for larger aperture crystals like KD*P. The crystals with up to 15 \times 15 mm dimensions can be mounted. CH3-30 model can fit crystals with up to 30 mm length.


Each oven is made exactly for specified crystal, so it cannot be used for different size crystals.

SPECIFICATIONS

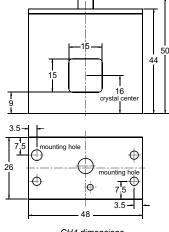
Model	CH3-15	CH3-30
Temperature tuning range near preset	±5°C	
Maximum crystals dimensions	15×15×15 mm	15×15×30 mm
Preset temperature	30-60 (80) °C	
Long-term stability	± 0.2 °C	
Powering requirements	12-15 V DC	
Power consumption	6 W	
Sensor type	NTC Thermo resistor	
Output connector	Molex 2 pin	
Dimensions, W×H×D	48×44×26 mm	48×44×36 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
CH3-15 – fixed te	emperature crystal ovens, temperature tuning range ±5 °K, crystal length up to 15 mm	
CH3-15-y/y-x	Standard crystal sizes *	299
CH3-15-y/z-x	Non-standard crystal size	340
CH3-15-y/y-80	For temperature up to 80 °C	360
CH3-30 – fixed te	emperature crystal ovens, temperature tuning range ±5 °K, crystal length up to 30 mm	
CH3-30-y/y-x	Standard crystal sizes *	340
CH3-30-y/z-x	Non-standard crystal size	381
CH3-30-y/y-80	Version for temperature up to 80 °C	391
Mounting acces	sories	
MS-1	Two axis tilt adjustment 5 degrees range, suitable for all types of CH3, CH4 or CH7 crystal ovens	144
MS-2	Two axis tilt stage, adjustment in 5 degree range, fits two pc. of CH3, CH4 or CH7 ovens	248
MS-3	Adapter for CH3, CH4 or CH7 mounting on rotary stage, 15 degrees fine tuning, angle read-out. Rotary stage should be ordered separately	56
Power supply P	S-12	
PS-12	Power supply for CH3, CH4 or CH7 crystal oven, 100-240 VAC mains. +12 VDC output	51

^{*} Sizes 3×3, 4×4, ...,15×15 are standard. ** y/y, y/z – crystal size, x – preset temperature in degrees of Celsius (30-60 °C range).

^{**} y/y, y/z – crystal size.



CH4

OVEN FOR NONLINEAR CRYSTALS

CH4 oven has identical mechanical design as CH3. The pre-set temperature can be adjusted in ±5 °C range by the help of potentiometer. The current temperature is not indicated. In addition, CH4 has "temperature ready" output signal, changing state when pre-set temperature is reached. CH4-50 model can fit crystals with up to 50 mm length.

CH4 dimensions

SPECIFICATIONS

Model	CH4-15	CH4-30	CH4-50
Temperature tuning range near preset		±5°C	
Maximum crystals dimensions	15×15×15 mm	15×15×30 mm	15×15×50 mm
Preset temperature		30-60 (80) °C	
Long-term stability		± 0.2 °C	
Temperature OK output signal		Present	
Powering requirements		12-15 V DC	
Power consumption	6 W	6 W	9 W
Sensor type		NTC Thermo resistor	
Output connector		Binder 719, 3 pin	
Dimensions, W×H×D	48×44×26 mm	48×50×36 mm	48×50×56 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
CH4-15 – Provides I	READY signal, stability ±0.2 °K, crystal length up to 15 mm	
CH4-15-y/y-x	Standard crystal sizes *	319
CH4-15-y/z-x	Non-standard crystal sizes	360
CH4-15-y/y-80	Version for temperature up to 80 °C	381
CH4-30 – Provides I	READY signal, stability ±0.2 °K, crystal length up to 30 mm	
CH4-30-y/y-x	Standard crystal sizes *	360
CH4-30-y/z-x	Non-standard crystal sizes	401
CH4-30-y/y-80	Version for temperature up to 80 °C	413
CH4-50 – Provides I	READY signal, stability ±0.2 °K, crystal length up to 50 mm	
CH4-50-y/y-x	Standard crystal sizes *	401
CH4-50-y/z-x	Non-standard crystal sizes	443
CH4-50-y/y-80	Version for temperature up to 80 °C	454
Mounting accessor	ries	
MS-1	Two axis tilt adjustment 5 degrees range, suitable for all types of CH3, CH4 or CH7 crystal ovens	144
MS-2	Two axis tilt stage, adjustment in 5 degrees range, fits two pc. of CH3, CH4 or CH7 ovens	248
MS-3	Adapter for CH3, CH4 or CH7 mounting on rotary stage, 15 degrees fine tuning, angle read-out. Rotary stage should be ordered separately	56
Power supply PS-1	2	
PS-12	Power supply for CH3, CH4 or CH7 crystal oven, 100-240 VAC mains, +12 VDC output	51

^{*} Sizes 3×3, 4×4, ...,15×15 are standard.

^{**} y/y, y/z – crystal size, x – preset temperature in degrees of Celsius (30-60 °C range).

CH7

OVEN FOR NONLINEAR CRYSTALS

CH7 is compact oven with build-in thermocontroller for temperature up to 60 °C. CH7 oven provides more crystal mounting options in comparison to CH3 or CH4. Like in CO1, each crystal is mounted into adapter before insertion in oven. CH7 and CO1 crystal adapters are compatible. Maximum crystal size for this model is 12×12 mm and the length of the crystal – 30 mm.

The pre-set temperature can be adjusted in ±5 °C range by the help of potentiometer. The current temperature is not indicated. CH7 has "temperature ready" signal, changing state when pre-set temperature is reached. For additional protection of crystal surfaces from the dust or other contamination, we offer windowed version CH7-20.

SPECIFICATIONS

,	48	1
	П	
23 crystal center		50 56
_	48	
12.5 mounting hole	++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++<l< td=""><td>. 36 12.5</td></l<>	. 36 12.5

	56 50
—48 ——	
- -	. 36

CH7 dimensions

Model	CH7-15	CH7-30
Temperature tuning range near preset	±5°C	
Maximum crystals dimensions	12×12×15 mm	12×12×30 mm
Sealing (optional)	FS windows	
Preset temperature	30-60 (80) °C	
Long-term stability	± 0.2 °C	
Temperature OK output signal	Present	
Powering requirements	12-15 V DC	
Power consumption	6 W	
Sensor type	NTC Thermo resistor	
Output connector	Binder 719, 3 pin	
Dimensions, W×H×D	48×50×44 mm	48×50×56 mm

Specifications are subject to changes without advance notice.

Code **	Description, features	Price, EUR
CH7-15 – Provides RE	ADY signal, stability ±0.2 °K, crystal length up to 15 mm	
CH7-15-y/y-x	Standard crystal sizes *	401
CH7-15-y/z-x	Non-standard crystal sizes	443
CH7-15-y/y-80	Version for temperature up to 80 °C	454
CH7-30 – Provides RE	ADY signal, stability ±0.2 °K, crystal length up to 30 mm	
CH7-30-y/y-x	Standard crystal sizes *	464
CH7-30-y/z-x	Non-standard crystal sizes	505
CH7-30-y/y-80	Version for temperature up to 80 °C	515
CH7-20 – Provides RE	ADY signal, with AR coated windows for crystal protection	
CH7-20-y/y-x	Fixed temperature in RT-60 °C range, crystal size limited to 10×10×20 mm	670
CH7-20-y/y-80	Version for temperature up to 80 °C	721
Power supply PS-12		
PS-12	Power supply for CH3, CH4 or CH7 crystal oven, 100-240 VAC mains, +12 VDC output	51

^{*} Sizes 3×3, 4×4, ...,12×12 are standard.

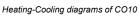
RELATED PRODUCTS

• Mount MS-1 for fine tuning of CH3, CH4 or CH7 angle is available. The tuning range is ± 2.5°.

 MS-2 type mount can fit two CH3, CH4 or CH7 type ovens and is ideal for holding second and third or fourth harmonics generators.

^{**} y/y, y/z – crystal size, x – preset temperature in degrees of Celsius (30-60 °C range).

TC2 • CO10 CO11 • CO12


PRECISION RESISTIVE HEATER KIT TC2 **AND CO10 SERIES OVENS**



With combination of temperature controller, CO10 series ovens are designed specifically for tuning and conditioning the periodically poled bulk devices (PPSLT, PPLN & PP-MgO:LN) and other nonlinear crystals. The oven is designed to hold the crystal with dimensions of 30×16×1 mm. Custom made oven is also available. The crystal heater provides temperature stabilization for crystals with an accuracy of 0.1°C. The crystal temperature can be changed from 50°C to 200 °C.

- Crystal's temperature stabilization
- Fast temperature control using active cooling
- External temperature is kept low by insulation no need for gloves
- No alignment is required when crystal is removed and replaced
- 4 screws to remove to exchange crystals
- Crystals can be replaced without removing the oven from the experiment
- LabVIEW based software included

APPLICATIONS

Code

- Fast temperature tuning of generated wavelengths in periodically oriented and noncritical phase-matching nonlinear crystals
- Temperature tuning of Bragg grating wavelengths
- Thermostat of tuning temperature

Heating-Cooling diagrams of CO11

Oven CO12

Heating-Cooling diagrams of CO12

	reatures	EUR
Thermocontroller TC2	Thermocontroller for CO10, CO11, CO12 fast temperature tuning PPLN crystall ovens	741
CO10	Water cooled fast temperature control	1195

Description,

Price,

33.0	oven for PPLN crystals	1100
CO11	Air cooled fast temperature control oven for PPLN crystals	1174
CO12	Cooled by mounting on heat transfering body fast temperature control oven for PPLN crystals	1329

SPECIFICATIONS

Model	CO10	CO11	CO12
Resolution, °C		0.1	
Long term stability, °C	±0.1		
Basic accuracy, °C	±0.5		
Temperature sensor type		PT1000	
General specifications:			
controllability	manı	ual or via RS232	2 port
mains	90-2	264 VAC; 50/60) Hz
max power consumption, W		45	
TC2 controller dimensions (H×W×D), mm	67×155×160		
weight, kg	1.5		
operating temperature	-15 °C to +35 °C		
storage temperature	-40 °C to +70 °C		
connectors	15-pin D-sub receptacle or 9-pin D-sub plug		
Temperature control range, °C	50-200	60-200	70-200
Cooling type	Water	Air	Heatsink
Heating time, s	130	120	110
rieating time, 3	(50-190 °C)	(60-190 °C)	(70-190 °C)
Cooling time (190 °C -50/60 °C), s	305	290	290
Cooling temperature change velocity, °C/s *	1.1-0.25	1.0-0.1	1 -0.1
Heating temperature change velocity, °C/s *	1.5-0.7	1.5-0.7	1.5-0.7
Set heater temperature, °C	50	60	70
Dimensions (H×W×D), mm	85×71×65	95×71×65	91×90.5×56

^{*} Depends on temperature.