BBO / LBO / KDP / LilO₃ / AgGaS₂ / GaSe – ULTRATHIN NONLINEAR CRYSTALS

Thin crystals are used in different applications with femtosecond pulses:

- > Harmonic generation (SHG, SFG)
- > Optical parametric generation and amplification (OPG, OPA)
- > Difference frequency generation (DFG)
- > Pulse width measurements by auto and cross correlation
- > THz frequency generation (in GaSe crystal)

The propagation of a ultrashort optical pulses through the crystal results in a delay of the pulses because of Group Velocities Mismatch (GVM), a duration broadening because of Group Delay Dispersion (GDD) and a frequency chirp. Unfortunately those effects forces to limit nonlinear crystal thickness in frequency generation schemes.

For two collinearly propagating pulses with different group velocities their quasistatic interaction length (L_{qs}) is defined as distance over which they separate by a path equal to the one of the pulses duration (or to the desired pulse duration):

$L_{qs} = \tau/GVM$;

where GVM is the group velocity mismatch and τ is the duration of the pulse. GVM calculations are presented for the most popular Type 1 phase matching applications for different crystals in *Table 2*.

Optimal BBO, LBO, KDP and LilO₃ crystal thicknesses which are limited by GVM for Type 1 SHG of 800 nm at different fundamental pulse duration are presented in the *Table 3*. Also effective coefficients and phase matching angles at room temperature (20 °C) are calculated. If longer crystal will be used this will cause second harmonic pulse broadening to the duration longer than fundamental

pulse duration (or desired pulse duration). Group delay dispersion (GDD) has an important impact on the propagation of pulses, because a pulse always has certain spectral width, so that dispersion will cause its frequency components to propagate with different velocities. In case of crystals where we have normal dispersion when refractive index decreases with increasing wavelength this leads to a lower group velocity of higherfrequency components, and thus to a positive chirp.

The frequency dependence of the group velocity also has an influence on the pulse duration. If the pulse is initially unchirped, dispersion in a crystal will always increase its duration. This is called dispersive pulse broadening. For an originally unchirped Gaussian pulse with the duration τ_0 , the pulse duration is increased according to:

$$t = \tau_{0} \sqrt{1 + \left(\frac{4\ln 2 \cdot D \cdot L}{\tau_{0}^{2}}\right)^{2}}$$

L – thickness of the crystal in mm. D – second order group delay dispersion or dispersion parameter. *Table 1* gives D parameter for Type 1 phase matching SHG @ 800 nm for 800 nm pulse with "o" polarization and 400 nm pulse with "e" polarization in different crystals.

<i>Table 2</i> . Group veloc	ity mismatch bet	ween shortest and	a longest wave	pulse for Type T	phase matchin	g

Crystal	SFM 800+266 nm	SFM 800+400 nm	SHG 800 nm	SHG 1030 nm	SHG 1064 nm	DFG 1.26-2.18 → 3 μm	DFG 1.48-1.74 → 10 µm
BBO	2074 fs/mm	737 fs/mm	194 fs/mm	94 fs/mm	85 fs/mm	-	-
LBO	-	448 fs/mm	123 fs/mm	51 fs/mm	44 fs/mm	-	-
KDP	-	370 fs/mm	77 fs/mm	1 fs/mm	-7 fs/mm	-	-
LilO3	-	-	559 fs/mm	285 fs/mm	262 fs/mm	-	-
AgGaS ₂	-	-	-	-	-	170 fs/mm	-10 fs/mm

Table 3. Quasistatic interaction length for Type 1 SHG of 800 nm

Crystal	200 fs	100 fs	50 fs	20 fs	10 fs	Cut angles θ, φ	Coefficient deff
BBO	1.0 mm	0.5 mm	0.26 mm	0.1 mm	0.05 mm	29.2°, 90°	2.00 pm/V
LBO	1.6 mm	0.8 mm	0.4 mm	0.16 mm	0.08 mm	90°, 31.7°	0.75 pm/V
KDP	2.6 mm	1.3 mm	0.6 mm	0.26 mm	0.13 mm	44.9°, 45°	0.30 pm/V
LilO ₃	0.4 mm	0.18 mm	0.01 mm	0.04 mm	0.018 mm	42.5°, 0°	3.59 pm/V

Table 1. D parameter for Type 1 SHG @800 nm orientation crystals for 800 nm(o-pol) and 400 nm (e-pol) pulses

Crystal	D at 800 nm	D at 400 nm	
BBO	75 fsec²/mm	196 fsec²/mm	
LBO	47 fsec ² /mm	128 fsec ² /mm	
KDP	27 fsec ² /mm	107 fsec ² /mm	
LilO ₃	196 fsec²/mm	589 fsec²/mm	

We may calculate that spectrum limited initial 30 fsec Gaussian pulse at 400 nm will be broadened to 35 fsec pulse after passing 1 mm thickness BBO crystal. LASER CRYSTALS

TERAHERTZ CRYSTALS

RAMAN CRYSTALS

POSITIONERS & HOLDERS

FREE STANDING CRYSTALS

The crystals of thickness down to 100 µm can be supplied as free standing crystals not attached to the support. However the ring mounts are highly recommended for safe handling of these thin crystals. The tolerance is $\pm 50 \ \mu\text{m}$ for crystals of thickness down to 300 μm and $\pm 20 \ \mu\text{m}$ for crystals of thickness down to 100 μm . GaSe crystal is supplied glued in to

dia Ø40 mm ring holder only.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness	
BBO 2×2 mm		25×25 mm	0.1 mm	
LBO	2×2 mm	60×60 mm	0.1 mm	
KDP	2×2 mm	Ø75 mm	0.1 mm*	
LiIO ₃	2×2 mm	50×50 mm	0.1 mm*	
AgGaS ₂	5×5 mm	20×20 mm	0.1 mm	
GaSe	Ø5 mm	Ø19 mm	0.01 mm	

* the thickness should be about 0.5 mm for max aperture KDP and LiIO₃

OPTICALLY CONTACTED CRYSTALS

BBO crystals of thickness less than 100 μ m can be supplied optically contacted on UV Fused Silica substrates sizes 10×10×2 mm or

12×12×2 mm. Other sizes of substrates are also available on request. The tolerances of BBO crystal thickness is +10/-5 μ m.

Crystal	Minimal aperture	Maximal aperture	Minimal thickness	
BBO 5×5 mm		18×18 mm	10±5 μm	

EKSMA OPTICS provides various AR, BBAR and protective coatings for all free standing crystals and optically contacted crystals. Ring mounts made from anodized aluminium and teflon are available for safe and convenient handling of ultrathin crystals.

STANDARD SPECIFICATIONS OF CRYSTALS

Crystals	BBO, LBO	KDP, LilO ₃ , AgGaS ₂	GaSe
Flatness	λ/6 at 633 nm	λ/4 at 633 nm	cleaved perpendicularly to optical axis.
Parallelism	< 10 arcsec	< 30 arcsec	
Angle tolerance	< 15 arcmin	< 30 arcmin	
Surface quality	10 – 5 scratch/dig	20 – 10 scratch/dig	Polish is not available

RELATED PRODUCTS

Other Ultrahin BBO crystals available. See pages 4.35; 4.42

Positioning Mount 840-0199 for Nonlinear Crystal Housing See page 2.27

