Nonlinear Crystals

LBO – LITHIUM TRIBORATE

LBO is well suited for various nonlinear optical applications:
❯ frequency doubling and tripling of high peak power pulsed Nd doped, Ti:Sapphire and Dye lasers
❯ optical parametric oscillators (OPO) of both Type 1 and Type 2 phase-matching
❯ non-critical phase-matching for frequency conversion of CW and quasi-CW radiation.

FEATURES
❯ Wide transparency region
❯ Broad Type 1 and Type 2
❯ Non-critical phase-matching (NCPM) range
❯ Small walk-off angle
❯ High damage threshold
❯ Wide acceptance angle
❯ High optical homogeneity

STANDARD SPECIFICATIONS

- Flatness: \(\lambda/8 \) at 633 nm
- Parallelism: < 20 arcsec
- Surface quality: 10 – 5 scratch & dig (MIL-PRF-13830B)
- Perpendicularity: < 5 arcmin
- Angle tolerance: < 30 arcmin
- Aperture tolerance: ± 0.1 mm
- Clear aperture: 90% of full aperture

WE OFFER:
❯ Crystals length up to 90 mm and aperture up to 60 x 60 mm
❯ AR, BBAR, P-coatings
❯ Different mounting and repolishing services

STANDARD CRYSTALS LIST

<table>
<thead>
<tr>
<th>Size, mm</th>
<th>(\theta), deg</th>
<th>(\phi), deg</th>
<th>Coating</th>
<th>Application</th>
<th>Catalogue number</th>
<th>Price, EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3x3x10</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-401</td>
<td>245</td>
</tr>
<tr>
<td>3x3x15</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-402</td>
<td>325</td>
</tr>
<tr>
<td>4x4x10</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-301</td>
<td>510</td>
</tr>
<tr>
<td>4x4x15</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-302</td>
<td>630</td>
</tr>
<tr>
<td>5x5x10</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-303</td>
<td>745</td>
</tr>
<tr>
<td>5x5x15</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-304</td>
<td>755</td>
</tr>
<tr>
<td>5x5x20</td>
<td>90</td>
<td>11.6</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>LBO-305</td>
<td>765</td>
</tr>
<tr>
<td>3x3x15</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-306</td>
<td>745</td>
</tr>
<tr>
<td>3x3x20</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-307</td>
<td>765</td>
</tr>
<tr>
<td>3x3x30</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-308</td>
<td>765</td>
</tr>
<tr>
<td>3x3x50</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-309</td>
<td>765</td>
</tr>
<tr>
<td>4x4x10</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-310</td>
<td>765</td>
</tr>
<tr>
<td>4x4x15</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-311</td>
<td>765</td>
</tr>
<tr>
<td>4x4x20</td>
<td>90</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>NCPM SHG @ 1064 nm, (T = 149) ºC</td>
<td>LBO-312</td>
<td>765</td>
</tr>
<tr>
<td>3x3x10</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-406</td>
<td>245</td>
</tr>
<tr>
<td>3x3x15</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-407</td>
<td>325</td>
</tr>
<tr>
<td>4x4x10</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-408</td>
<td>510</td>
</tr>
<tr>
<td>4x4x15</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-409</td>
<td>630</td>
</tr>
<tr>
<td>5x5x10</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-410</td>
<td>655</td>
</tr>
<tr>
<td>5x5x15</td>
<td>42.2</td>
<td>90</td>
<td>AR/AR @ 1064+532/355 nm</td>
<td>THG @ 1064 nm</td>
<td>LBO-411</td>
<td>765</td>
</tr>
</tbody>
</table>

Visit www.eksmaoptics.com for new products and prices • Rev. 20190601
PHYSICAL AND OPTICAL PROPERTIES

Chemical formula: LiB$_3$O$_5$

Crystal structure: orthorhombic, mm2

Optical symmetry: Negative biaxial

Space group: Pna2$_1$

Density: 2.47 g/cm3

Mohs hardness: 6

Optical homogeneity: $2\eta = 10^{-6}$ cm$^{-1}$

Transparency region at "0" transmittance level: 155 – 3200 nm

Linear absorption coefficient at 1064 nm: < 0.01 % cm$^{-1}$

Refractive indices:

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>n_x</th>
<th>n_y</th>
<th>n_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>532</td>
<td>1.5785</td>
<td>1.6065</td>
<td>1.6212</td>
</tr>
<tr>
<td>1064</td>
<td>1.5656</td>
<td>1.5905</td>
<td>1.6055</td>
</tr>
<tr>
<td>355</td>
<td>1.5971</td>
<td>1.6275</td>
<td>1.6430</td>
</tr>
</tbody>
</table>

Sellmeier equations (λ, µm):

\[
n_x^2 = 2.4542 + \frac{0.01125}{(\lambda^2 - 0.01135)} - 0.01388 \lambda^2
\]

\[
n_y^2 = 2.5390 + \frac{0.01277}{(\lambda^2 - 0.01189)} - 0.01849 \lambda^2 + 4.3025 \times 10^{-5} \lambda^4 - 2.9131 \times 10^{-5} \lambda^6
\]

\[
n_z^2 = 2.5865 + 0.0131 \frac{1}{\lambda^2 - 0.01223} - 0.01862 \lambda^2 + 4.5778 \times 10^{-5} \lambda^4 - 3.2526 \times 10^{-5} \lambda^6
\]

Type 1 SHG phase matching range: 554 – 2600 nm

Type 2 SHG phase matching range: 790 – 2150 nm

NCPM SHG temperature dependence:

Type 1 range 950 – 1300 nm

\[T_1 = -1893.3 \lambda^4 + 8886.6 \lambda^3 - 13019.8 \lambda^2 + 5401.5 \lambda + 863.9\]

Type 1 range 1300 – 1800 nm

\[T_2 = 878.1 \lambda^4 - 6954.5 \lambda^3 + 20734.2 \lambda^2 - 26378 \lambda + 12020\]

Type 2 range 1100 – 1500 nm

\[T_3 = -21630.6 \lambda^4 + 112251 \lambda^3 - 220460 \lambda^2 + 194153 \lambda - 64614.5\]

NCPM SHG temperature at 1064 nm

- Type 1 temperature 149 °C
- Type 2 temperature 43 °C

Walk-off angle: 7 mrad (Type 1 SHG 1064 nm)

Thermal acceptance: 6.4 K×cm (Type 1 SHG 1064 nm)

Angular acceptance: 6.5 mrad×cm (Type 1 SHG 1064 nm)

Expansion coefficients:

- $\alpha_x = 10.8 \times 10^{-5}$ K$^{-1}$
- $\alpha_y = -8.8 \times 10^{-5}$ K$^{-1}$
- $\alpha_z = 3.4 \times 10^{-5}$ K$^{-1}$

Nonlinearity coefficients:

- $d_{31} = -(0.98\pm0.09)$ pm/V
- $d_{32} = (1.05\pm0.09)$ pm/V
- $d_{33} = (0.05\pm0.006)$ pm/V

Effective nonlinearity:

- XY plane $d_{yoz} = d_{32} \cos \varphi$
- YZ plane $d_{zox} = d_{31} \cos \theta$

Laser induced damage threshold (LIDT): >5 J/cm2 (>500 MW/cm2), 1064 nm, 10 ns, 10 Hz

Related Products

LBO crystals for SHG of Yb:KGW/KYW laser frequency conversion. See page 4.42

Crystal Oven TC2

[See page 2.28]

149 °C temperature is required to achieve Non-Critical Phase Matching (NCPM) in LBO at type 1 SHG of 1064 nm application. **TC2 oven** is specially designed for this purpose (see technical specifications, p. 2.28).

Heatpoint Crystal Oven

[See page 2.29]

Heatpoint is a compact round oven designed for heating (30 – 80 °C) of humidity sensitive nonlinear crystals. It is used to prevent moisture condensation on crystal faces or for thermostabilization of the crystals.

Please contact EKSMA OPTICS for further information or nonstandard specifications.