KDP / DKDP – POTASSIUM DIDEUTERIUM PHOSPHATE

ELECTRO-OPTICAL/Q-SWITCHING APPLICATION
› EKSMA OPTICS offers highly deuterated D>96% electro-optic crystal – DKDP for Q-switching application;
› Standard dimensions of electro-optic DKDP crystals for Q-switching are cylinders dia 9x20 mm and dia 12x24 mm however manufacturing of custom size and rectangular shape crystals is available;
› Gold evaporated or silver paste electrodes are available;
› Dielectric thin film AR coatings for specified laser wavelengths are available;
› Typical quarter wave voltage 3.4 kV at 1064 nm;
› Typical contrast ratio between crossed polarizers better than 1:2000;
› Damage threshold of AR coated DKDP surface >5 J/cm² at 1064 nm, 10 ns pulses.

FREQUENCY CONVERSION APPLICATIONS
› DKDP crystals are used for second harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers. Cut angle of crystal for operation at room temperature is 36.6° for Type 1 phase matching and 53.7° deg for Type 2 phase matching.
› DKDP crystals are used for third harmonic generation of high pulse energy Q-switched and mode-locked Nd:YAG lasers via sum frequency generation. Cut angle of crystal for operation at room temperature is 59.3° for Type 2 phase matching.

STANDARD CRYSTALS LIST

<table>
<thead>
<tr>
<th>Size, mm</th>
<th>θ, deg</th>
<th>φ, deg</th>
<th>Coating</th>
<th>Application</th>
<th>Catalogue number</th>
<th>Price, EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>15x15x13</td>
<td>36.5</td>
<td>45</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm, Type 1</td>
<td>DKDP-401</td>
<td>485</td>
</tr>
<tr>
<td>15x15x13</td>
<td>53.5</td>
<td>0</td>
<td>AR/AR @ 1064+532 nm</td>
<td>SHG @ 1064 nm, Type 2</td>
<td>DKDP-402</td>
<td>485</td>
</tr>
<tr>
<td>12x12x20</td>
<td>59.3</td>
<td>0</td>
<td>AR/AR @ 1064+532 / 355 nm</td>
<td>THG @ 1064 nm, Type 2</td>
<td>DKDP-403</td>
<td>475</td>
</tr>
<tr>
<td>12x12x20</td>
<td>53.5</td>
<td>0</td>
<td>AR/AR @ 1064 / 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>DKDP-404</td>
<td>475</td>
</tr>
<tr>
<td>15x15x20</td>
<td>53.5</td>
<td>0</td>
<td>AR/AR @ 1064 / 1064+532 nm</td>
<td>SHG @ 1064 nm</td>
<td>DKDP-405</td>
<td>579</td>
</tr>
<tr>
<td>15x15x20</td>
<td>59.3</td>
<td>0</td>
<td>AR/AR @ 1064+532 / 355 nm</td>
<td>THG @ 1064 nm</td>
<td>DKDP-406</td>
<td>579</td>
</tr>
<tr>
<td>12x12x5</td>
<td>76.5</td>
<td>45</td>
<td>AR/AR @ 532/266 nm</td>
<td>SHG @ 532 nm</td>
<td>KDP-401</td>
<td>405</td>
</tr>
<tr>
<td>15x15x7</td>
<td>76.5</td>
<td>45</td>
<td>AR/AR @ 532/266 nm</td>
<td>SHG @ 532 nm</td>
<td>KDP-402</td>
<td>480</td>
</tr>
</tbody>
</table>

Wide selection of non-standard size and cut angle DKDP crystals is available at www.eksmaoptics.com
PHYSICAL AND OPTICAL PROPERTIES

Crystals	KDP	DKDP
Chemical formula	K_2HPO_4	KD_2PO_4
Symmetry	42 m	42 m
Hygroscopicity	high	high
Density, g/cm³	2.332	2.355
Thermal conductivity, W/cm·K	k_{11} = 1.9×10⁻²	k_{11} = 1.9×10⁻²
Thermal expansion coefficients, K⁻¹	a_{11} = 2.5×10⁻¹	a_{11} = 1.9×10⁻⁵
Transmission range, μm	0.18–1.5	0.2–2.0
Residual absorption, cm⁻¹ (at 1.06 μm)	0.04	0.005
Measured refractive index (at 1.06 μm)	n_b = 1.4938	n_b = 1.4931
n_a = 1.4599	n_a = 1.4582	
Sellmeier coeff., λ – wavelength in μm	n² = A + B/λ² – C + D/λ⁴	
A	n_a = 2.259276	n_a = 2.2409
n_a = 2.132668	n_a = 2.1260	
B	n_b = 13.00522	n_b = 2.2470
n_b = 3.2279924	n_b = 0.7844	
C	n_b = 400	126.9205
n_b = 400	123.4032	
D	n_a = 0.01008956	n_a = 2.7821234
n_a = 0.008637494	n_a = 0.0086	
E	n_a = 0.012942625	n_a = 0.01156
n_a = 0.012881043	n_a = 0.0120	
Nonlinear coeff. d_{36}, pm/V (at 1.06 μm)	0.43	0.40
Effective nonlinear coefficient	Type 1 oo = d_{36} × sinθ × sin²φ	
Type 2 ee = d_{36} × sinθ × cos²φ		
Laser damage threshold, GW/cm² at 1.06 μm | 10 ps – 100
1 ns – 10
15 ns – 14.4
250 ps – 6
10 ns – 0.5

PHASE MATCHING ANGLES AND BANDWIDTHS FOR SHG OF 1064 nm

<table>
<thead>
<tr>
<th>Crystal</th>
<th>KDP</th>
<th>DKDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of phase matching</td>
<td>Type 1 oo</td>
<td>Type 2 ee</td>
</tr>
<tr>
<td>Cut angle θ, deg</td>
<td>41.2</td>
<td>59.1</td>
</tr>
<tr>
<td>Acceptances for crystal of 1 cm length (FWHM):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δθ (angular), mrad</td>
<td>1.1</td>
<td>2.2</td>
</tr>
<tr>
<td>ΔT thermal, K</td>
<td>10</td>
<td>11.8</td>
</tr>
<tr>
<td>Δλ spectral, nm</td>
<td>21</td>
<td>4.5</td>
</tr>
<tr>
<td>Walk off, mrad</td>
<td>28</td>
<td>25</td>
</tr>
</tbody>
</table>

ADP, DADP, RDP, CDA and DCDA crystals are available upon request!

RELATED PRODUCTS

Nonlinear Crystal Oven CH8
See page 2.30

DKDP and KDP crystals are highly hygroscopic. CH8 and CH9 ovens help to protect hygroscopic crystals from moisture. The raised working temperature (40 – 60 °C) allows to extend crystal lifetime and to keep it thermostable. This helps to stabilise SHG efficiency.